Online Segmentation of LiDAR Sequences: Dataset and Algorithm

被引:7
|
作者
Loiseau, Romain [1 ,2 ]
Aubry, Mathieu [1 ]
Landrieu, Loic [2 ]
机构
[1] Univ Gustave Eiffel, CNRS, LIGM, Ecole Ponts, F-77454 Marne La Vallee, France
[2] Univ Gustave Eiffel, LASTIG, IGN ENSG, F-94160 St Mande, France
来源
关键词
LiDAR; Transformer; Autonomous driving; Real-time; Online segmentation;
D O I
10.1007/978-3-031-19839-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Roof-mounted spinning LiDAR sensors are widely used by autonomous vehicles. However, most semantic datasets and algorithms used for LiDAR sequence segmentation operate on 360. frames, causing an acquisition latency incompatible with real-time applications. To address this issue, we first introduce HelixNet, a 10 billion point dataset with fine-grained labels, timestamps, and sensor rotation information necessary to accurately assess the real-time readiness of segmentation algorithms. Second, we propose Helix4D, a compact and efficient spatio-temporal transformer architecture specifically designed for rotating LiDAR sequences. Helix4D operates on acquisition slices corresponding to a fraction of a full sensor rotation, significantly reducing the total latency. Helix4D reaches accuracy on par with the best segmentation algorithms on HelixNet and SemanticKITTI with a reduction of over 5x in terms of latency and 50x in model size. The code and data are available at: https://romainloiseau.fr/helixnet.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 50 条
  • [1] SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences
    Behley, Jens
    Garbade, Martin
    Milioto, Andres
    Quenzel, Jan
    Behnke, Sven
    Stachniss, Cyrill
    Gall, Juergen
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9296 - 9306
  • [2] Segmentation algorithm for DNA sequences
    Zhang, CT
    Gao, F
    Zhang, R
    [J]. PHYSICAL REVIEW E, 2005, 72 (04)
  • [3] A lidar ground segmentation algorithm for complex scenes
    Qiu, Jiayue
    Lai, Jizhou
    Li, Zhimin
    Huang, Kai
    Liu, Jianye
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2020, 41 (11): : 244 - 251
  • [4] MemorySeg: Online LiDAR Semantic Segmentation with a Latent Memory
    Li, Enxu
    Casas, Sergio
    Urtasun, Raquel
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 745 - 754
  • [5] YUTO SEMANTIC: A LARGE SCALE AERIAL LIDAR DATASET FOR SEMANTIC SEGMENTATION
    Yoo, S.
    Ko, C.
    Sohn, G.
    Lee, H.
    [J]. GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 209 - 215
  • [6] DIAS: A dataset and benchmark for intracranial artery segmentation in DSA sequences
    Liu, Wentao
    Tian, Tong
    Wang, Lemeng
    Xu, Weijin
    Li, Lei
    Li, Haoyuan
    Zhao, Wenyi
    Tian, Siyu
    Pan, Xipeng
    Deng, Yiming
    Gao, Feng
    Yang, Huihua
    Wang, Xin
    Su, Ruisheng
    [J]. MEDICAL IMAGE ANALYSIS, 2024, 97
  • [7] DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
    Singer, Nina M.
    Asari, Vijayan K.
    [J]. IEEE ACCESS, 2021, 9 : 97495 - 97504
  • [8] Linear segmentation algorithm for detecting layer boundary with lidar
    Mao, Feiyue
    Gong, Wei
    Logan, Timothy
    [J]. OPTICS EXPRESS, 2013, 21 (22): : 26876 - 26887
  • [9] DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
    Singer, Nina M.
    Asari, Vijayan K.
    [J]. IEEE Access, 2021, 9 : 97495 - 97504
  • [10] CSPC-Dataset: New LiDAR Point Cloud Dataset and Benchmark for Large-Scale Scene Semantic Segmentation
    Tong, Guofeng
    Li, Yong
    Chen, Dong
    Sun, Qi
    Cao, Wei
    Xiang, Guiqiu
    [J]. IEEE ACCESS, 2020, 8 : 87695 - 87718