YUTO SEMANTIC: A LARGE SCALE AERIAL LIDAR DATASET FOR SEMANTIC SEGMENTATION

被引:0
|
作者
Yoo, S. [1 ,2 ]
Ko, C. [1 ,2 ]
Sohn, G. [1 ,2 ]
Lee, H. [1 ,2 ]
机构
[1] York Univ, GeoICT Lab, Toronto, ON M3J 1P3, Canada
[2] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
semantic segmentation; aerial imagery; laser scanning; evaluation; test;
D O I
10.5194/isprs-archives-XLVIII-1-W2-2023-209-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Creating virtual duplicates of the real world has garnered significant attention due to its applications in areas such as autonomous driving, urban planning, and urban mapping. One of the critical tasks in the computer vision community is semantic segmentation of outdoor collected point clouds. The development and research of robust semantic segmentation algorithms heavily rely on precise and comprehensive benchmark datasets. In this paper, we present the York University Teledyne Optech 3D Semantic Segmentation Dataset (YUTO Semantic), a multi-mission large-scale aerial LiDAR dataset specifically designed for 3D point cloud semantic segmentation. The dataset comprises approximately 738 million points, covering an area of 9.46 square kilometers, which results in a high point density of 100 points per square meter. Each point in the dataset is annotated with one of nine semantic classes. Additionally, we conducted performance tests of state-of-the-art algorithms to evaluate their effectiveness in semantic segmentation tasks. The YUTO Semantic dataset serves as a valuable resource for advancing research in 3D point cloud semantic segmentation and contributes to the development of more accurate and robust algorithms for real-world applications. The dataset is available at https://github.com/Yacovitch/YUTO_Semantic.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 50 条
  • [1] DALES: A Large-scale Aerial LiDAR Data Set for Semantic Segmentation
    Varney, Nina
    Asari, Vijayan K.
    Graehling, Quinn
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 717 - 726
  • [2] LASDU: A Large-Scale Aerial LiDAR Dataset for Semantic Labeling in Dense Urban Areas
    Ye, Zhen
    Xu, Yusheng
    Huang, Rong
    Tong, Xiaohua
    Li, Xin
    Liu, Xiangfeng
    Luan, Kuifeng
    Hoegner, Ludwig
    Stilla, Uwe
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (07)
  • [3] CSPC-Dataset: New LiDAR Point Cloud Dataset and Benchmark for Large-Scale Scene Semantic Segmentation
    Tong, Guofeng
    Li, Yong
    Chen, Dong
    Sun, Qi
    Cao, Wei
    Xiang, Guiqiu
    IEEE ACCESS, 2020, 8 : 87695 - 87718
  • [4] Toronto-3D: A Large-scale Mobile LiDAR Dataset for Semantic Segmentation of Urban Roadways
    Tan, Weikai
    Qin, Nannan
    Ma, Lingfei
    Li, Ying
    Du, Jing
    Cai, Guorong
    Yang, Ke
    Li, Jonathan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 797 - 806
  • [5] DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
    Singer, Nina M.
    Asari, Vijayan K.
    IEEE ACCESS, 2021, 9 : 97495 - 97504
  • [6] DALES Objects: A Large Scale Benchmark Dataset for Instance Segmentation in Aerial Lidar
    Singer, Nina M.
    Asari, Vijayan K.
    IEEE Access, 2021, 9 : 97495 - 97504
  • [7] RailPC: A large-scale railway point cloud semantic segmentation dataset
    Jiang, Tengping
    Li, Shiwei
    Zhang, Qinyu
    Wang, Guangshuai
    Zhang, Zequn
    Zeng, Fankun
    An, Peng
    Jin, Xin
    Liu, Shan
    Wang, Yongjun
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (06) : 1548 - 1560
  • [8] A large-scale remote sensing scene dataset construction for semantic segmentation
    Xu, LeiLei
    Shi, ShanQiu
    Liu, YuJun
    Zhang, Hao
    Wang, Dan
    Zhang, Lu
    Liang, Wan
    Chen, Hao
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2023, 14 (04) : 299 - 323
  • [9] Electrical Thermal Image Semantic Segmentation: Large-Scale Dataset and Baseline
    Wang, Futian
    Guo, Yin
    Li, Chenglong
    Lu, Andong
    Ding, Zhongfeng
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [10] SemanticRT: A Large-Scale Dataset and Method for Robust Semantic Segmentation in Multispectral Images
    Ji, Wei
    Li, Jingjing
    Bian, Cheng
    Zhang, Zhicheng
    Cheng, Li
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3307 - 3316