Sparse methods for automatic relevance determination

被引:0
|
作者
Rudy, Samuel H. [1 ]
Sapsis, Themistoklis P. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Sparse regression; Automatic relevance determination; System identification; IDENTIFICATION; SELECTION;
D O I
10.1016/j.physd.2021.132843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work considers methods for imposing sparsity in Bayesian regression with applications in non linear system identification. We first review automatic relevance determination (ARD) and analytically demonstrate the need to additional regularization or thresholding to achieve sparse models. We then discuss two classes of methods, regularization based and thresholding based, which build on ARD to learn parsimonious solutions to linear problems. In the case of orthogonal features, we analytically demonstrate favorable performance with regard to learning a small set of active terms in a linear system with a sparse solution. Several example problems are presented to compare the set of proposed methods in terms of advantages and limitations to ARD in bases with hundreds of elements. The aim of this paper is to analyze and understand the assumptions that lead to several algorithms and to provide theoretical and empirical results so that the reader may gain insight and make more informed choices regarding sparse Bayesian regression. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] MYOGLOBIN - BIOCHEMISTRY, METHODS OF DETERMINATION, CLINICAL RELEVANCE
    PORSTMANN, B
    PORSTMANN, T
    SCHMECHTA, H
    VOGT, S
    GROSS, J
    [J]. ZEITSCHRIFT FUR KLINISCHE MEDIZIN-ZKM, 1986, 41 (01): : 5 - 10
  • [22] Fast Bayesian Inference of Sparse Networks with Automatic Sparsity Determination
    Yu, Hang
    Wu, Songwei
    Xin, Luyin
    Dauwels, Justin
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [23] Automatic relevance determination for identifying thalamic regions implicated in schizophrenia
    Browne, Antony
    Jakary, Angela
    Vinogradov, Sophia
    Fu, Yu
    Deicken, Raymond F.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (06): : 1101 - 1107
  • [24] Using ensembles of neural networks to improve automatic relevance determination
    Fu, Y.
    Browne, A.
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1590 - 1594
  • [25] Personality Gaze Patterns Unveiled via Automatic Relevance Determination
    Cuculo, Vittorio
    D'Amelio, Alessandro
    Lanzarotti, Raffaella
    Boccignone, Giuseppe
    [J]. SOFTWARE TECHNOLOGIES: APPLICATIONS AND FOUNDATIONS, 2018, 11176 : 171 - 184
  • [26] Pruning Extreme Wavelets Learning Machine by Automatic Relevance Determination
    de Campos Souza, Paulo V.
    Silva Araujo, Vinicius J.
    Araujo, Vanessa S.
    Batista, Lucas O.
    Guimaraes, Augusto J.
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 : 208 - 220
  • [27] Automatic relevance determination for the estimation of relevant features for object recognition
    Ulusoy, Ilkay
    Bishop, Christopher M.
    [J]. 2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 65 - +
  • [28] COMPARISON OF DIFFERENT AUTOMATIC METHODS FOR RATE DETERMINATION
    CARTER, MD
    MEISTER, LJ
    GUERRERO, JA
    [J]. ERDOL UND KOHLE ERDGAS PETROCHEMIE VEREINIGT MIT BRENNSTOFF-CHEMIE, 1970, 23 (02): : 105 - &
  • [29] AUTOMATIC METHODS FOR ELEMENTAL ANALYSIS .2. AUTOMATIC OXYGEN DETERMINATION
    KOPYCKI, W
    FRAISSE, D
    BINKOWSKI, J
    [J]. CHEMIA ANALITYCZNA, 1980, 25 (05): : 829 - 839
  • [30] Automatic Protein Structure Determination from Sparse NMR Spectroscopy Data
    MacCallum, Justin L.
    Tang, Yuefeng
    Huang, Y. Janet
    Montelione, Gaetano T.
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 153A - 153A