Symmetry and dynamics universality of supermetal in quantum chaos

被引:1
|
作者
Fang, Ping [1 ,2 ]
Tian, Chushun [3 ]
Wang, Jiao [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Fujian, Peoples R China
[3] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 23期
基金
中国国家自然科学基金;
关键词
LOCALIZATION; SPECTRUM; ROTATOR; SYSTEMS;
D O I
10.1103/PhysRevB.92.235437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chaotic systems exhibit rich quantum dynamical behaviors ranging from dynamical localization to normal diffusion to ballistic motion. Dynamical localization and normal diffusion simulate electron motion in an impure crystal with a vanishing and finite conductivity, i.e., an "Anderson insulator" and a "metal," respectively. Ballistic motion simulates a perfect crystal with diverging conductivity, i.e., a "supermetal." We analytically find and numerically confirm that, for a large class of chaotic systems, the metal-supermetal dynamics crossover occurs and is universal, determined only by the system's symmetry. Furthermore, we show that the universality of this dynamics crossover is identical to that of eigenfunction and spectral fluctuations described by the random matrix theory.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] SYMMETRY VS. CHAOS IN COLLECTIVE DYNAMICS
    Cejnar, P.
    Macek, M.
    Stransky, P.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2011, 20 (02) : 213 - 218
  • [22] Semiclassical foundation of universality in quantum chaos -: art. no. 014103
    Müller, S
    Heusler, S
    Braun, P
    Haake, F
    Altland, A
    PHYSICAL REVIEW LETTERS, 2004, 93 (01) : 014103 - 1
  • [23] Universality in active chaos
    Tél, T
    Nishikawa, T
    Motter, AE
    Grebogi, C
    Toroczkai, Z
    CHAOS, 2004, 14 (01) : 72 - 78
  • [24] Symmetry of quantum molecule dynamics
    Burenin, A.V.
    Uspekhi Fizicheskikh Nauk, 2002, 172 (07):
  • [25] Symmetry of quantum intramolecular dynamics
    Burenin, AV
    PHYSICS-USPEKHI, 2002, 45 (07) : 753 - 776
  • [26] QUANTUM CHAOS IN THE LORENZ EQUATIONS WITH SYMMETRY-BREAKING
    SARKAR, S
    SATCHELL, JS
    PHYSICAL REVIEW A, 1987, 35 (01): : 398 - 405
  • [27] Irreversible classical dynamics and quantum chaos
    Simons, BD
    PHYSICA A, 1999, 263 (1-4): : 148 - 154
  • [28] Quantum Chaos in the Dynamics of Cold Atoms
    Ghose, S.
    Chaudhury, S.
    Smith, A.
    Anderson, B.
    Jessen, P.
    WOMEN IN PHYSICS, 2013, 1517 : 205 - 205
  • [29] Chaos in effective classical and quantum dynamics
    Casetti, L
    Gatto, R
    Modugno, M
    PHYSICAL REVIEW E, 1998, 57 (02) : R1223 - R1226
  • [30] Signatures of chaos in the dynamics of quantum discord
    Madhok, Vaibhav
    Gupta, Vibhu
    Trottier, Denis-Alexandre
    Ghose, Shohini
    PHYSICAL REVIEW E, 2015, 91 (03):