Minimum dissipation principle in stationary non-equilibrium states

被引:43
|
作者
Bertini, L
De Sole, A
Gabrielli, D
Jona-Lasinio, G
Landim, C
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy
[6] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil
[7] Univ Rouen, CNRS, UMR 6085, F-76128 Mont St Aignan, France
关键词
stationary non equilibrium states; lattice gases; minimum dissipation; optimal control;
D O I
10.1023/B:JOSS.0000037220.57358.94
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize to non equilibrium states Onsager's minimum dissipation principle. We also interpret this principle and some previous results in terms of optimal control theory. Entropy production plays the role of the cost necessary to drive the system to a prescribed macroscopic configuration.
引用
收藏
页码:831 / 841
页数:11
相关论文
共 50 条
  • [21] Dissipation-driven selection of states in non-equilibrium chemical networks
    Daniel Maria Busiello
    Shiling Liang
    Francesco Piazza
    Paolo De Los Rios
    Communications Chemistry, 4
  • [22] Dissipation-driven selection of states in non-equilibrium chemical networks
    Busiello, Daniel Maria
    Liang, Shiling
    Piazza, Francesco
    De Los Rios, Paolo
    COMMUNICATIONS CHEMISTRY, 2021, 4 (01)
  • [23] Dissipation in Non-equilibrium Spacetime Thermodynamics
    Chirco, G.
    Liberati, S.
    FIRST MEDITERRANEAN CONFERENCE ON CLASSICAL AND QUANTUM GRAVITY (MCCQG 2009), 2010, 222
  • [24] On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states
    Inst. de Physique Théorique, Ecl. Polytech. Federale Lausanne, C., Lausanne, Switzerland
    Phys A Stat Mech Appl, 3 (392-428):
  • [25] Convergence to stationary non-equilibrium states for Klein-Gordon equations
    Dudnikova, T., V
    IZVESTIYA MATHEMATICS, 2021, 85 (05) : 932 - 952
  • [26] On the adiabatic properties of a stochastic adiabatic wall: Evolution, stationary non-equilibrium, and equilibrium states
    Gruber, C
    Frachebourg, L
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 272 (3-4) : 392 - 428
  • [27] Non-equilibrium Stationary States in the Symmetric Simple Exclusion with Births and Deaths
    Anna De Masi
    Errico Presutti
    Dimitrios Tsagkarogiannis
    Maria Eulalia Vares
    Journal of Statistical Physics, 2012, 147 : 519 - 528
  • [28] State-dependent driving: a route to non-equilibrium stationary states
    Das, Soumen
    Ghosh, Shankar
    Gupta, Shamik
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2260):
  • [29] Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics
    Luc Rey-Bellet
    Lawrence E. Thomas
    Communications in Mathematical Physics, 2002, 225 : 305 - 329
  • [30] Non-equilibrium stationary states from the equation of motion of open systems
    Wu, Jinshan
    NEW JOURNAL OF PHYSICS, 2010, 12