Room-temperature sub-band gap optoelectronic response of hyperdoped silicon

被引:203
|
作者
Mailoa, Jonathan P. [1 ]
Akey, Austin J. [1 ]
Simmons, Christie B. [1 ]
Hutchinson, David [2 ]
Mathews, Jay [3 ]
Sullivan, Joseph T. [1 ]
Recht, Daniel [4 ]
Winkler, Mark T. [1 ]
Williams, James S. [5 ]
Warrender, Jeffrey M. [3 ]
Persans, Peter D. [2 ]
Aziz, Michael J. [4 ]
Buonassisi, Tonio [1 ]
机构
[1] MIT, Sch Engn, Cambridge, MA 02139 USA
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] US Army ARDEC, Benet Labs, Watervliet, NY 12189 USA
[4] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
WAVE-GUIDE PHOTODIODES; OPTICAL-PROPERTIES; CROSS-SECTIONS; INFRARED PHOTODIODES; GOLD ACCEPTOR; PHOTOIONIZATION; PHOTO; SI; SEMICONDUCTORS; RECOMBINATION;
D O I
10.1038/ncomms4011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Room-temperature infrared sub-band gap photoresponse in silicon is of interest for telecommunications, imaging and solid-state energy conversion. Attempts to induce infrared response in silicon largely centred on combining the modification of its electronic structure via controlled defect formation (for example, vacancies and dislocations) with waveguide coupling, or integration with foreign materials. Impurity-mediated sub-band gap photo-response in silicon is an alternative to these methods but it has only been studied at low temperature. Here we demonstrate impurity-mediated room-temperature sub-band gap photoresponse in single-crystal silicon-based planar photodiodes. A rapid and repeatable laser-based hyperdoping method incorporates supersaturated gold dopant concentrations on the order of 10(20) cm(-3) into a single-crystal surface layer similar to 150 nm thin. We demonstrate room-temperature silicon spectral response extending to wavelengths as long as 2,200 nm, with response increasing monotonically with supersaturated gold dopant concentration. This hyperdoping approach offers a possible path to tunable, broadband infrared imaging using silicon at room temperature.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Room-temperature sub-band gap optoelectronic response of hyperdoped silicon
    Jonathan P. Mailoa
    Austin J. Akey
    Christie B. Simmons
    David Hutchinson
    Jay Mathews
    Joseph T. Sullivan
    Daniel Recht
    Mark T. Winkler
    James S. Williams
    Jeffrey M. Warrender
    Peter D. Persans
    Michael J. Aziz
    Tonio Buonassisi
    [J]. Nature Communications, 5
  • [2] Gold-Hyperdoped Germanium with Room-Temperature Sub-Band-Gap Optoelectronic Response
    Gandhi, Hemi H.
    Pastor, David
    Tran, Tuan T.
    Kalchmair, S.
    Smilie, L. A.
    Mailoa, Jonathan P.
    Milazzo, Ruggero
    Napolitani, Enrico
    Loncar, Marco
    Williams, James S.
    Aziz, Michael J.
    Mazur, Eric
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (06):
  • [3] Hyperdoped Silicon Sub-Band Gap Photoresponse for an Intermediate Band Solar Cell in Silicon
    Mailoa, Jonathan P.
    Akey, Austin J.
    Simmons, Christie B.
    Hutchinson, David
    Mathews, Jay
    Sullivan, Joseph T.
    Recht, Daniel
    Winkler, Mark T.
    Williams, James S.
    Warrender, Jeffrey M.
    Persans, Peter D.
    Aziz, Michael .
    Buonassisi, Tonio
    [J]. 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 1073 - 1076
  • [4] Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon
    Ferdous, Naheed
    Ertekin, Elif
    [J]. AIP ADVANCES, 2018, 8 (05)
  • [5] Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon
    Zhu, Zhen
    Shao, Hezhu
    Dong, Xiao
    Li, Ning
    Ning, Bo-Yuan
    Ning, Xi-Jing
    Zhao, Li
    Zhuang, Jun
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [6] Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon
    Zhen Zhu
    Hezhu Shao
    Xiao Dong
    Ning Li
    Bo-Yuan Ning
    Xi-Jing Ning
    Li Zhao
    Jun Zhuang
    [J]. Scientific Reports, 5
  • [7] Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques
    Limaye, Mukta V.
    Chen, S. C.
    Lee, C. Y.
    Chen, L. Y.
    Singh, Shashi B.
    Shao, Y. C.
    Wang, Y. F.
    Hsieh, S. H.
    Hsueh, H. C.
    Chiou, J. W.
    Chen, C. H.
    Jang, L. Y.
    Cheng, C. L.
    Pong, W. F.
    Hu, Y. F.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques
    Mukta V. Limaye
    S. C. Chen
    C. Y. Lee
    L. Y. Chen
    Shashi B. Singh
    Y. C. Shao
    Y. F. Wang
    S. H. Hsieh
    H. C. Hsueh
    J. W. Chiou
    C. H. Chen
    L. Y. Jang
    C. L. Cheng
    W. F. Pong
    Y. F. Hu
    [J]. Scientific Reports, 5
  • [9] Crystallinity and Sub-Band Gap Absorption of Femtosecond-Laser Hyperdoped Silicon Formed in Different N-Containing Gas Mixtures
    Sun, Haibin
    Xiao, Jiamin
    Zhu, Suwan
    Hu, Yue
    Feng, Guojin
    Zhuang, Jun
    Zhao, Li
    [J]. MATERIALS, 2017, 10 (04):
  • [10] Room-Temperature Infrared Photoresponse from Ion Beam-Hyperdoped Silicon
    Wang, Mao
    Berencen, Yonder
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (01):