Perfusion Parameter Estimation Using Neural Networks and Data Augmentation

被引:6
|
作者
Robben, David [1 ]
Suetens, Paul [1 ]
机构
[1] Katholieke Univ Leuven, Med Image Comp ESAT PSI, Leuven, Belgium
关键词
STROKE;
D O I
10.1007/978-3-030-11723-8_44
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Perfusion imaging plays a crucial role in acute stroke diagnosis and treatment decision making. Current perfusion analysis relies on deconvolution of the measured signals, an operation that is mathematically ill-conditioned and requires strong regularization. We propose a neural network and a data augmentation approach to predict perfusion parameters directly from the native measurements. A comparison on simulated CT Perfusion data shows that the neural network provides better estimations for both CBF and Tmax than a state of the art deconvolution method, and this over a wide range of noise levels. The proposed data augmentation enables to achieve these results with less than 100 datasets.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 50 条
  • [21] Data augmentation based malware detection using convolutional neural networks
    Catak, Ferhat Ozgur
    Ahmed, Javed
    Sahinbas, Kevser
    Khand, Zahid Hussain
    PEERJ COMPUTER SCIENCE, 2021,
  • [22] Data Augmentation based Malware Detection Using Convolutional Neural Networks
    Catak F.O.
    Ahmed J.
    Sahinbas K.
    Khand Z.H.
    PeerJ Computer Science, 2021, 7 : 1 - 26
  • [23] Parameter estimation of particle flow model for soils using neural networks
    Li S.
    Wu L.
    Qu F.
    Sun W.
    Journal of Convergence Information Technology, 2010, 5 (08) : 3
  • [24] Two new techniques for aircraft parameter estimation using neural networks
    Raisinghani, SC
    Ghosh, AK
    Kalra, PK
    AERONAUTICAL JOURNAL, 1998, 102 (1011): : 25 - 30
  • [25] Two new techniques for aircraft parameter estimation using neural networks
    Indian Inst of Technology, Kanpur, India
    Aeronaut J, 1011 (25-30):
  • [26] Hydranet: Data Augmentation for Regression Neural Networks
    Dubost, Florian
    Bortsova, Gerda
    Adams, Hieab
    Ikram, M. Arfan
    Niessen, Wiro
    Vernooij, Meike
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 438 - 446
  • [27] Data Augmentation Strategies for Human Activity Data Using Generative Adversarial Neural Networks
    Hoelzemann, Alexander
    Sorathiya, Nimish
    Van Laerhoven, Kristof
    2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 8 - 13
  • [28] Rationalizing Graph Neural Networks with Data Augmentation
    Liu, Gang
    Inae, Eric
    Luo, Tengfei
    Jiang, Meng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (04)
  • [29] Artificial neural networks for parameter estimation in geophysics
    Calderón-Macías, C
    Sen, MK
    Stoffa, PL
    GEOPHYSICAL PROSPECTING, 2000, 48 (01) : 21 - 47
  • [30] Regularization parameter estimation for feedforward neural networks
    Guo, P
    Lyu, MR
    Chen, CLP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2003, 33 (01): : 35 - 44