WILDFIRE VULNERABILITY ASSESSMENT IN WESTERN SICHUAN CHINA BASED ON MULTI-SOURCE SPATIO-TEMPORAL DATA

被引:0
|
作者
Zhao, Donglin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu, Sichuan, Peoples R China
关键词
fire vulnerability; the analytic hierarchy process; multi-source spatio-temporal data; six factors; western Sichuan;
D O I
10.1109/IGARSS46834.2022.9884285
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The consideration of fire vulnerability (potential effects of fire on social and ecological values) should always be part of fire risk evaluations. This study aimed to map the fire vulnerability based on six factors, including per capita GDP, population density, housing price, star rating and the number of tourist attractions, land use status, and available fire risk index from previous studies. The analytic hierarchy process was used to analyze the fire vulnerability in three prefectures in western Sichuan (Liangshan Prefecture, Ganzi Prefecture, and Aba Prefecture). The wildfire vulnerability assessment showed strong consistency with real cases. The results provided a scientific basis for the investment in forest fire prevention and the deployment of forest fire prevention teams.
引用
收藏
页码:7930 / 7933
页数:4
相关论文
共 50 条
  • [21] Spatio-Temporal Wildfire Prediction Using Multi-Modal Data
    Xu, Chen
    Xie, Yao
    Vazquez, Daniel A. Zuniga
    Yao, Rui
    Qiu, Feng
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2023, 4 : 302 - 313
  • [22] Spatio-temporal assessment of vulnerability to drought
    Vinit K. Jain
    R. P. Pandey
    Manoj K. Jain
    Natural Hazards, 2015, 76 : 443 - 469
  • [23] Multi-source Object-Based Approach for Spatio-Temporal Evolution of Land Cover
    Mastere, Mohamed
    Achbun, Abdelkrim
    El Fellah, Salma
    El Fellah, Bouchta
    MAPPING AND SPATIAL ANALYSIS OF SOCIO-ECONOMIC AND ENVIRONMENTAL INDICATORS FOR SUSTAINABLE DEVELOPMENT: CASE STUDIES FROM NORTH AFRICA, 2020, : 37 - 49
  • [24] Spatio-temporal assessment of vulnerability to drought
    Jain, Vinit K.
    Pandey, R. P.
    Jain, Manoj K.
    NATURAL HAZARDS, 2015, 76 (01) : 443 - 469
  • [25] A Spatio-Temporal Monitoring Method Based on Multi-Source Remote Sensing Data Applied to the Case of the Temi Landslide
    Wang, Hua
    Guo, Qing
    Ge, Xiaoqing
    Tong, Lianzi
    LAND, 2022, 11 (08)
  • [26] An Improved Multi-Source Data-Driven Landslide Prediction Method Based on Spatio-Temporal Knowledge Graph
    Chen, Luanjie
    Ge, Xingtong
    Yang, Lina
    Li, Weichao
    Peng, Ling
    REMOTE SENSING, 2023, 15 (08)
  • [27] Multi-source and heterogeneous marine hydrometeorology spatio-temporal data analysis with machine learning: a survey
    Wu, Song
    Li, Xiaoyong
    Dong, Wei
    Wang, Senzhang
    Zhang, Xiaojiang
    Xu, Zichen
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (03): : 1115 - 1156
  • [28] Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion
    Wang, Zhaocai
    Xu, Nannan
    Bao, Xiaoguang
    Wu, Junhao
    Cui, Xuefei
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 178
  • [29] MDTP: A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data
    Fang, Ziquan
    Pan, Lu
    Chen, Lu
    Du, Yuntao
    Gao, Yunjun
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 14 (08): : 1289 - 1297
  • [30] A Spatio-Temporal Local Association Query Algorithm for Multi-Source Remote Sensing Big Data
    Zhu, Lilu
    Su, Xiaolu
    Hu, Yanfeng
    Tai, Xianqing
    Fu, Kun
    REMOTE SENSING, 2021, 13 (12)