On adaptive loop transfer recovery using Kalman filter-based disturbance accommodating control

被引:8
|
作者
George, Jemin [1 ]
机构
[1] US Army, Sensors & Electron Devices Directorate, Res Lab, Adelphi, MD 20783 USA
来源
IET CONTROL THEORY AND APPLICATIONS | 2014年 / 8卷 / 04期
关键词
FEEDBACK-CONTROL; DESIGN; ROBUSTNESS;
D O I
10.1049/iet-cta.2013.0671
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An adaptive loop transfer recovery (LTR) approach for uncertain systems using the Kalman filter-based disturbance accommodating control scheme is presented. This study shows that the full LTR property of disturbance accommodating control is invariant to system uncertainties and external disturbances acting on the system. Also presented here is an adaptive LTR scheme, where the system process noise intensity matrix is updated online to achieve full LTR. Numerical simulations are presented to verify the superiority of the approach compared to the traditional linear quadratic regulator/LTR.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 50 条
  • [21] Performance Analysis of a Novel Kalman Filter-based Signal Tracking Loop
    Wang Wentong
    Li Chuanjun
    Wu Jiangxiong
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION (ICRCA 2017), 2017, : 69 - 72
  • [22] Theoretical analysis and tuning criteria of the Kalman filter-based tracking loop
    Tang, Xinhua
    Falco, Gianluca
    Falletti, Emanuela
    Lo Presti, Letizia
    [J]. GPS SOLUTIONS, 2015, 19 (03) : 489 - 503
  • [23] Kalman Filter-Based Model Predictive Control for an Adaptive Cruise Control System Considering Measurement Noise
    Liu, Mingchun
    Chen, Wei
    Huang, Juhua
    Ning, Yu
    [J]. SAE International Journal of Connected and Automated Vehicles, 2020, 3 (01): : 53 - 66
  • [24] Adaptive stochastic disturbance accommodating control
    George, Jemin
    Singla, Puneet
    Crassidis, John L.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (02) : 310 - 335
  • [25] Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs
    Shi, Y.
    Fang, H.
    Yan, M.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2009, 19 (18) : 1976 - 1992
  • [26] Filter-based immersion and invariance adaptive control
    Chen, Wei
    Hu, Jian
    Yao, Jian-Yong
    Nie, Wei-Rong
    Zhou, Hai-Bo
    [J]. Kongzhi yu Juece/Control and Decision, 2024, 39 (01): : 151 - 160
  • [27] A novel Kalman filter-based navigation using beacons
    Doraiswami, R
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (02) : 830 - 840
  • [28] Dropout compensation by equalizer selection and Kalman filter-based timing recovery
    Xie, Jin
    Kumar, B. V. K. Vijaya
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (05) : 2045 - 2053
  • [29] Test data generation with a Kalman filter-based adaptive genetic algorithm
    Aleti, Aldeida
    Grunske, Lars
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2015, 103 : 343 - 352
  • [30] Development of an adaptive Kalman filter-based storm tide forecasting model
    K. M. Mok
    U. H. Lai
    K. I. Hoi
    [J]. Journal of Hydrodynamics, 2016, 28 : 1029 - 1036