Some New Estimates for the Berezin Number of Hilbert Space Operators

被引:4
|
作者
Altwaijry, Najla [1 ]
Feki, Kais [2 ,3 ]
Minculete, Nicusor [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Univ Monastir, Fac Econ Sci & Management Mahdia, Mahdia 5111, Tunisia
[3] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR ES 22 13, Sfax 3018, Tunisia
[4] Transilvania Univ Brasov, Dept Math & Comp Sci, Brasov 500091, Romania
关键词
reproducing kernel Hilbert space; Berezin number; Berezin norm; inequality; NUMERICAL RADIUS; INEQUALITIES;
D O I
10.3390/axioms11120683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have developed new estimates of some estimates involving the Berezin norm and Berezin number of bounded linear operators defined on a reproducing kernel Hilbert space H-Omega. The uniqueness or novelty of this article consists of new estimates of Berezin numbers for different types of operators. These estimates improve the upper bounds of the Berezin numbers obtained by other similar papers. We give several upper bounds for ber(T)(S+T), where T, S is an element of B(H-Omega) and r >= 1. We also present an estimation of ber(2r)( Sigma(d) (i=1) T-i) where T-i is an element of B(H-Omega), i =(SIC),(SIC) and r >= 1. Some of the obtained inequalities represent improvements to earlier ones. In this work, the ideas and methodologies presented may serve as a starting point for future investigation in this field.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Davis–Wielandt–Berezin radius inequalities of reproducing kernel Hilbert space operators
    Anirban Sen
    Pintu Bhunia
    Kallol Paul
    Afrika Matematika, 2023, 34
  • [32] COMMUTANTS OF SOME HILBERT SPACE OPERATORS
    SHIELDS, AL
    WALLEN, LJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 250 - &
  • [33] Norm estimates for functions of compact operators in a Hilbert space
    不详
    OPERATOR FUNCTIONS AND LOCALIZATION OF SPECTRA, 2003, 1830 : 75 - 96
  • [34] SOME PROPERTIES OF THE SPACE OF COMPACT OPERATORS ON A HILBERT SPACE
    GOLDBERG, S
    MATHEMATISCHE ANNALEN, 1959, 138 (04) : 329 - 331
  • [35] Davis-Wielandt-Berezin radius inequalities of reproducing kernel Hilbert space operators
    Sen, Anirban
    Bhunia, Pintu
    Paul, Kallol
    AFRIKA MATEMATIKA, 2023, 34 (03)
  • [36] REVERSE INEQUALITIES FOR THE BEREZIN NUMBER OF OPERATORS
    Garayev, Mubariz
    Guediri, Hocine
    Altwaijry, Najla
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 179 - 189
  • [37] BEREZIN NUMBER OF OPERATORS AND RELATED QUESTIONS
    Karaev, Mubariz T.
    Iskenderov, Nizameddin Sh.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01): : 68 - 72
  • [38] SOME IDEALS OF OPERATORS ON HILBERT-SPACE
    BENNETT, G
    STUDIA MATHEMATICA, 1976, 55 (01) : 27 - 40
  • [39] SOME IDEALS OF OPERATORS ON HILBERT-SPACE
    BENNETT, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (06): : A532 - A532
  • [40] Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators
    Taki, Zakaria
    Kaadoud, Mohamed Chraibi
    FILOMAT, 2023, 37 (20) : 6925 - 6947