The Use of Robust Criteria for the Choice of Regression Model by LS-SVM Method

被引:0
|
作者
Popov, Alexander A. [1 ]
Boboev, Sharaf A. [1 ]
机构
[1] NSTU, Dept Theoret & Appl Informat, Novosibirsk, Russia
关键词
robust solution; the cross-validation criterion; the method of pseudo-observations; loss function;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article researches are conducted in the variants of robust criteria for selection the regression model with the use of LS-SVM method in the conditions of foul data use. For estimation of model parameters uses M-estimation method with the Huber loss function. For the settings of LS-SVM algorithm parameters is used the cross-validation criterion and its robust variants.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [1] A robust LS-SVM regression
    Valyon, J
    Horváth, G
    [J]. ENFORMATIKA, VOL 7: IEC 2005 PROCEEDINGS, 2005, : 148 - 153
  • [2] A Robust LS-SVM Regression
    Valyon, Jozsef
    Horvath, Gabor
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 7, 2005, 7 : 148 - 153
  • [3] Comparison of SVM and LS-SVM for regression
    Wang, HF
    Hu, DJ
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 279 - 283
  • [4] The construction of the robust regression models with the LS-SVM method using a nonquadratic loss function
    Popov, Alexander A.
    Boboev, Sharaf A.
    [J]. 2016 11TH INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY (IFOST), PTS 1 AND 2, 2016,
  • [5] Application Research of Robust LS-SVM Regression Model in Forecasting Patent Application Counts
    张丽玮
    张茜
    汪雪锋
    朱东华
    [J]. Journal of Beijing Institute of Technology, 2009, 18 (04) : 497 - 501
  • [6] Application Research of the Robust LS-SVM Regression Model in Forecasting Patent Application Quantities
    Zhang Liwei
    Zhang Qian
    Zhu Donghua
    Wang Xuefeng
    Yu Bo
    [J]. PROCEEDINGS OF INTERNATIONAL FORUM ON TECHNOLOGICAL INNOVATION AND COMPETITIVE TECHNICAL INTELLIGENCE 2008, 2009, : 141 - 146
  • [7] Generalization of Parameter Selection of SVM and LS-SVM for Regression
    Zeng, Jiye
    Tan, Zheng-Hong
    Matsunaga, Tsuneo
    Shirai, Tomoko
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (02): : 745 - 755
  • [8] Robust LS-SVM regression using fuzzy C-means clustering
    Shim, Jooyong
    Hwang, Changha
    Nau, Sungkyun
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, 2006, 4221 : 157 - 166
  • [9] Fuzzy nonlinear regression model based on LS-SVM in feature space
    Hong, Dug Hun
    Hwang, Changha
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 208 - 216
  • [10] Robust LS-SVM regression for ore grade estimation in a seafloor hydrothermal sulphide deposit
    Zhang Xunan
    Song Shiji
    Li Jiabiao
    Wu Cheng
    [J]. ACTA OCEANOLOGICA SINICA, 2013, 32 (08) : 16 - 25