Robust LS-SVM regression using fuzzy C-means clustering

被引:0
|
作者
Shim, Jooyong
Hwang, Changha [1 ]
Nau, Sungkyun
机构
[1] Dankook Univ, Div Informat & Comp Sci, Seoul 140714, South Korea
[2] Catholic Univ Daegu, Dept Appl Stat, Kyungbuk 702701, South Korea
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The least squares support vector machine(LS-SVM) is a widely applicable and useful machine learning technique for classification and regression. The solution of LS-SVM is easily obtained from the linear Karush-Kuhn-Tucker conditions instead of a quadratic programming problem of SVM. However, LS-SVM is less robust due to the assumption of the errors and the use of a squared loss function. In this paper we propose a robust LS-SVM regression method which imposes the robustness on the estimation of LS-SVM regression by assigning weight to each data point, which represents the membership degree to cluster. In the numerical studies, the robust LS-SVM regression is compared with the ordinary LS-SVM regression.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 50 条
  • [1] A robust LS-SVM regression
    Valyon, J
    Horváth, G
    [J]. ENFORMATIKA, VOL 7: IEC 2005 PROCEEDINGS, 2005, : 148 - 153
  • [2] A Robust LS-SVM Regression
    Valyon, Jozsef
    Horvath, Gabor
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 7, 2005, 7 : 148 - 153
  • [3] Robust Weighted Fuzzy C-Means Clustering
    Hadjahmadi, A. H.
    Homayounpour, M. A.
    Ahadi, S. M.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 305 - 311
  • [4] Comparison of SVM and LS-SVM for regression
    Wang, HF
    Hu, DJ
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 279 - 283
  • [5] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [6] A Robust Fuzzy c-Means Clustering Algorithm for Incomplete Data
    Li, Jinhua
    Song, Shiji
    Zhang, Yuli
    Li, Kang
    [J]. INTELLIGENT COMPUTING, NETWORKED CONTROL, AND THEIR ENGINEERING APPLICATIONS, PT II, 2017, 762 : 3 - 12
  • [7] A Robust Fuzzy Local Information C-Means Clustering Algorithm
    Krinidis, Stelios
    Chatzis, Vassilios
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (05) : 1328 - 1337
  • [8] Parameter optimization of LS-SVM for regression using NGA
    Wang, Qi
    Feng, Zhigang
    SHIDA, Katsunori
    [J]. INTELLIGENT COMPUTING: THEORY AND APPLICATIONS V, 2007, 6560
  • [9] The construction of the robust regression models with the LS-SVM method using a nonquadratic loss function
    Popov, Alexander A.
    Boboev, Sharaf A.
    [J]. 2016 11TH INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGY (IFOST), PTS 1 AND 2, 2016,
  • [10] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142