Two-hidden-layer extreme learning machine for regression and classification

被引:86
|
作者
Qu, B. Y. [1 ,2 ]
Lang, B. F. [1 ]
Liang, J. J. [1 ]
Qin, A. K. [3 ]
Crisalle, O. D. [1 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
[2] Zhongyuan Univ Technol, Sch Elect & Informat Engn, Zhengzhou 450007, Peoples R China
[3] RMIT Univ, Sch Comp Sci & Informat Technol, Melbourne, Vic 3001, Australia
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Two-hidden-layer; Regression; Classification; Neural network; FEEDFORWARD NEURAL-NETWORK; LANDMARK RECOGNITION; CAPABILITIES; ALGORITHM;
D O I
10.1016/j.neucom.2015.11.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a single-hidden-layer feedforward neural network, an extreme learning machine (ELM) randomizes the weights between the input layer and the hidden layer as well as the bias of hidden neurons, and analytically determines the weights between the hidden layer and the output layer using the least-squares method. This paper proposes a two-hidden-layer ELM (denoted TELM) by introducing a novel method for obtaining the parameters of the second hidden layer (connection weights between the first and second hidden layer and the bias of the second hidden layer), hence bringing the actual hidden layer output closer to the expected hidden layer output in the two-hidden-layer feedforward network. Simultaneously, the TELM method inherits the randomness of the ELM technique for the first hidden layer (connection weights between the input weights and the first hidden layer and the bias of the first hidden layer). Experiments on several regression problems and some popular classification datasets demonstrate that the proposed TELM can consistently outperform the original ELM, as well as some existing multilayer ELM variants, in terms of average accuracy and the number of hidden neurons. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:826 / 834
页数:9
相关论文
共 50 条
  • [31] Multi hidden layer extreme learning machine optimised with batch intrinsic plasticity
    Pang, Shan
    Yang, Xinyi
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 18 (04) : 375 - 382
  • [32] Dynamic adjustment of hidden layer structure for convex incremental extreme learning machine
    Sun, Yongjiao
    Chen, Yuangen
    Yuan, Ye
    Wang, Guoren
    [J]. NEUROCOMPUTING, 2017, 261 : 83 - 93
  • [33] MODIFICATION OF HIDDEN LAYER WEIGHT IN EXTREME LEARNING MACHINE USING GAIN RATIO
    Anggraeny, Fetty Tri
    Purbasari, Intan Yuniar
    [J]. 3RD BALI INTERNATIONAL SEMINAR ON SCIENCE & TECHNOLOGY (BISSTECH 2015), 2016, 58
  • [34] Accelerated Optimal Topology Search for Two-Hidden-Layer Feedforward Neural Networks
    Thomas, Alan J.
    Walters, Simon D.
    Petridis, Miltos
    Gheytassi, Saeed Malekshahi
    Morgan, Robert E.
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2016, 2016, 629 : 253 - 266
  • [35] Boosting ridge for the extreme learning machine globally optimised for classification and regression problems
    Carlos Peralez-González
    Javier Pérez-Rodríguez
    Antonio M. Durán-Rosal
    [J]. Scientific Reports, 13 (1)
  • [36] Boosting ridge for the extreme learning machine globally optimised for classification and regression problems
    Peralez-Gonzalez, Carlos
    Perez-Rodriguez, Javier
    Duran-Rosal, Antonio M.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [37] Extreme learning machine with a deterministic assignment of hidden weights in two parallel layers
    Henriquez, Pablo A.
    Ruz, Gonzalo A.
    [J]. NEUROCOMPUTING, 2017, 226 : 109 - 116
  • [38] Extreme Learning Machine with initialized hidden weight
    Tavares, L. D.
    Saldanha, R. R.
    Vieira, D. A. G.
    [J]. 2014 12TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2014, : 43 - +
  • [39] Hidden Node Optimization for Extreme Learning Machine
    Huang, Yan-wei
    Lai, Da-hu
    [J]. CONFERENCE ON MODELING, IDENTIFICATION AND CONTROL, 2012, 3 : 375 - 380
  • [40] Stacked Unitwise Fast Combination Classification for Single Hidden Layer Neural Networks Using Extreme Learning Machine on EEG Signals
    Zhou, Ta
    Zhang, Zhifeng
    Wang, Sifan
    Nan, Chuxi
    Hang, Hongjuan
    Zheng, Yanfang
    Li, Xuebao
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (07) : 1491 - 1495