Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices

被引:41
|
作者
Zhang, XJ [1 ]
Zhu, RQ [1 ]
Zhao, J [1 ]
Chen, YF [1 ]
Zhu, YY [1 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
关键词
D O I
10.1103/PhysRevB.69.085118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phonon-polariton dispersion relation is calculated in the piezoelectric superlattice (PSL). In this specific case, the coupling could take place not only between the electromagnetic (EM) waves (photons) and the transverse superlattice vibrations (transverse phonons), but also between the EM waves and the longitudinal superlattice vibrations (longitudinal phonons), which gives rise to two types of phonon polaritons. It differs with the case in an ionic crystal, where the phonon polariton could only originate from the coupling between transverse lattice vibrations (transverse optical phonons) and EM waves. The two types of phonon polaritons are experimentally observed in the one-dimensional PSL with a periodicity of micrometer scale, corresponding to the frequency region of microwave. The PSL is based on a congruent lithium tantalite (LiTaO3) crystal and fabricated by the method of electric field poling at room temperature. Both microwave absorption and dielectric abnormality are observed and the sizes of band gaps are measured for the two types of phonon polaritons.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Phonon-polariton Bragg generation at the surface of silicon carbide
    Ivchenko, V. S.
    Kazantsev, D. V.
    Ievleva, V. A.
    Kazantseva, E. A.
    Kuntsevich, A. Yu.
    APPLIED PHYSICS LETTERS, 2024, 125 (17)
  • [42] Time-of-flight detection of terahertz phonon-polariton
    Luo T.
    Ilyas B.
    Hoegen A.V.
    Lee Y.
    Park J.
    Park J.-G.
    Gedik N.
    Nature Communications, 15 (1)
  • [43] Refractive Index-Based Control of Hyperbolic Phonon-Polariton Propagation
    Fali, Alireza
    White, Samuel T.
    Folland, Thomas G.
    He, Mingze
    Aghamiri, Neda A.
    Liu, Song
    Edgar, James H.
    Caldwell, Joshua D.
    Haglund, Richard F.
    Abate, Yohannes
    NANO LETTERS, 2019, 19 (11) : 7725 - 7734
  • [44] The Guided-Mode Phonon-Polariton in Suspended Waveguides
    Holmstrom, S. A.
    Stievater, T. H.
    Pruessner, M. W.
    Park, D.
    Rabinovich, W. S.
    Kanakaraju, S.
    Richardson, C. J. K.
    Khurgin, J. B.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [45] Thermal energy transport in a surface phonon-polariton crystal
    Ordonez-Miranda, Jose
    Tranchant, Laurent
    Joulain, Karl
    Ezzahri, Younes
    Drevillon, Jeremie
    Volz, Sebastian
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [46] Transition from surface phonon-polariton to surface phonon-plasmon-polariton by thermal injection of free carriers
    El-Helou, Y.
    Wu, K-T
    Bruyant, A.
    Woon, W-Y
    Kazan, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (26)
  • [47] Surface Phonon-Polariton Heat Capacity of Polar Nanofilms
    Ordonez-Miranda, Jose
    Volz, Sebastian
    Nomura, Masahiro
    PHYSICAL REVIEW APPLIED, 2021, 15 (05)
  • [48] PICOSECOND PHONON-POLARITON PULSE TRANSMISSION THROUGH AN INTERFACE
    VALLEE, F
    FLYTZANIS, C
    PHYSICAL REVIEW LETTERS, 1995, 74 (16) : 3281 - 3284
  • [49] Direct visualization of phonon-polariton focusing and amplitude enhancement
    Stoyanov, NS
    Ward, DW
    Feurer, T
    Nelson, KA
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (06): : 2897 - 2901
  • [50] Polariton stark effect in dispersive and photonic band gap materials
    Singh, MR
    PHYSICA B-CONDENSED MATTER, 2003, 337 (1-4) : 266 - 274