OKA'S LEMMA, CONVEXITY, AND INTERMEDIATE POSITIVITY CONDITIONS

被引:7
|
作者
Herbig, A. -K. [1 ]
McNeal, J. D. [2 ]
机构
[1] Univ Vienna, Dept Math, Vienna, Austria
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
PLURISUBHARMONIC DEFINING FUNCTIONS;
D O I
10.1215/ijm/1380287467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof of Oka's lemma is given for smoothly bounded, pseudoconvex domains Omega subset of subset of C-n. The method of proof is then also applied to other convexity-like hypotheses on the boundary of Omega.
引用
收藏
页码:195 / 211
页数:17
相关论文
共 50 条
  • [31] Covariance analysis, positivity and the Yakubovich-Kalman-Popov lemma
    Johansson, R
    Robertsson, A
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3363 - 3368
  • [32] Algebraic Convexity Conditions for Gotoh's Nonquadratic Yield Function
    Tong, Wei
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2018, 85 (07):
  • [33] Schur positivity and the q-log-convexity of the Narayana polynomials
    William Y. C. Chen
    Larry X. W. Wang
    Arthur L. B. Yang
    [J]. Journal of Algebraic Combinatorics, 2010, 32 : 303 - 338
  • [34] POSITIVITY OF DIRECT IMAGE BUNDLES AND CONVEXITY ON THE SPACE OF KAHLER METRICS
    Berndtsson, Bo
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 81 (03) : 457 - 482
  • [35] Schur positivity and the q-log-convexity of the Narayana polynomials
    Chen, William Y. C.
    Wang, Larry X. W.
    Yang, Arthur L. B.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 303 - 338
  • [36] HENSEL'S LEMMA AND THE INTERMEDIATE VALUE THEOREM OVER A NON-ARCHIMEDEAN FIELD
    Corgnier, Luigi
    Massaza, Carla
    Valabrega, Paolo
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2017, 9 (02) : 185 - 211
  • [37] CONDITIONS FOR A MATRIX KRONECKER LEMMA
    HALL, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 : 271 - 277
  • [38] THE STRONG POSITIVITY CONDITIONS
    REINOZA, A
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (01) : 54 - 62
  • [39] POSITIVITY CONDITIONS FOR POLYNOMIALS
    DEANGELIS, V
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1994, 14 : 23 - 51
  • [40] Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization
    Vaithilingam Jeyakumar
    Nguyen Quang Huy
    Guoyin Li
    [J]. Optimization and Engineering, 2009, 10 : 491 - 503