OKA'S LEMMA, CONVEXITY, AND INTERMEDIATE POSITIVITY CONDITIONS

被引:7
|
作者
Herbig, A. -K. [1 ]
McNeal, J. D. [2 ]
机构
[1] Univ Vienna, Dept Math, Vienna, Austria
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
PLURISUBHARMONIC DEFINING FUNCTIONS;
D O I
10.1215/ijm/1380287467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof of Oka's lemma is given for smoothly bounded, pseudoconvex domains Omega subset of subset of C-n. The method of proof is then also applied to other convexity-like hypotheses on the boundary of Omega.
引用
收藏
页码:195 / 211
页数:17
相关论文
共 50 条
  • [1] A quantitative analysis of Oka's lemma
    Harrington, Phillip S.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (01) : 113 - 138
  • [2] A quantitative analysis of Oka’s lemma
    Phillip S. Harrington
    [J]. Mathematische Zeitschrift, 2007, 256 : 113 - 138
  • [3] A Remark on Oka's Lemma and a Geometric Property of Pseudoconvex Domains
    Dinew, Slawomir
    Dinew, Zywomir
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [4] Eva Kallin's lemma on polynomial convexity
    De Paepe, PJ
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 : 1 - 10
  • [5] A Remark on Oka’s Lemma and a Geometric Property of Pseudoconvex Domains
    Sławomir Dinew
    Żywomir Dinew
    [J]. The Journal of Geometric Analysis, 2024, 34
  • [6] The strong Oka's Lemma, bounded plurisubharmonic functions and the δ-Neumann problem
    Harrington, Phillip S.
    Shaw, Mei-Chi
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2007, 11 (01) : 127 - 139
  • [7] Calabi-Polyak convexity theorem, Yuan's lemma and S-lemma: extensions and applications
    Song, Mengmeng
    Xia, Yong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (03) : 743 - 756
  • [8] Calabi-Polyak convexity theorem, Yuan’s lemma and S-lemma: extensions and applications
    Mengmeng Song
    Yong Xia
    [J]. Journal of Global Optimization, 2023, 85 : 743 - 756
  • [9] On the positivity and convexity of polynomials
    Zheng, JJ
    Chen, XQ
    Zhang, JJ
    [J]. CAD/GRAPHICS '2001: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, VOLS 1 AND 2, 2001, : 82 - 88
  • [10] On the positivity and convexity of polynomials
    Natl. Cent. for Comp. Animation, Bournemouth Univ., Poole, Dorset BH12 5BB, United Kingdom
    [J]. Ruan Jian Xue Bao/Journal of Software, 2002, 13 (04): : 510 - 517