Consensus Inference with Multilayer Graphs for Multi-modal Data

被引:0
|
作者
Ramamurthy, Karthikeyan Natesan [1 ]
Thiagarajan, Jayaraman J. [2 ]
Sridhar, Rahul [3 ]
Kothandaraman, Premnishanth
Nachiappan, Ramanathan
机构
[1] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] SSN Coll Engn, Madras, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emergence of numerous modalities for data generation necessitates the development of machine learning techniques that can perform efficient inference with multi-modal data. In this paper, we present an approach to learn discriminant low-dimensional projections from supervised multi-modal data. We construct intra-and inter-class similarity graphs for each modality and optimize for consensus projections in the kernel space. Features obtained with these projections can then be used to train a classifier for consensus inference. We also provide methods for out-of-sample extensions with novel test data. Classification results with standard multi-modal data sets demonstrate the efficacy of our method.
引用
收藏
页码:1341 / 1345
页数:5
相关论文
共 50 条
  • [31] A Decade of Processing Multi-Modal Data at Xfels
    Brewster, Aaron S.
    Paley, Daniel W.
    Sauter, Nicholas K.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : A157 - A157
  • [32] Deep Object Tracking with Multi-modal Data
    Zhang, Xuezhi
    Yuan, Yuan
    Lu, Xiaoqiang
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2016, : 161 - 165
  • [33] Multi-Modal Data Fusion for Big Events
    Papacharalapous, A. E.
    Hovelynck, Stefan
    Cats, O.
    Lankhaar, J. W.
    Daamen, W.
    van Oort, N.
    van Lint, J. W. C.
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2015, 7 (04) : 5 - 10
  • [34] Multi-modal image retrieval with random walk on multi-layer graphs
    Khasanova, Renata
    Dong, Xiaowen
    Frossard, Pascal
    [J]. PROCEEDINGS OF 2016 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2016, : 1 - 6
  • [35] Multi-modal anchor adaptation learning for multi-modal summarization
    Chen, Zhongfeng
    Lu, Zhenyu
    Rong, Huan
    Zhao, Chuanjun
    Xu, Fan
    [J]. NEUROCOMPUTING, 2024, 570
  • [36] Bayesian Vector Autoregressive Model for Multi-Subject Effective Connectivity Inference Using Multi-Modal Neuroimaging Data
    Chiang, Sharon
    Guindani, Michele
    Yeh, Hsiang J.
    Haneef, Zulfi
    Stern, John M.
    Vannucci, Marina
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (03) : 1311 - 1332
  • [37] Multi-Modal MPPI and Active Inference for Reactive Task and Motion Planning
    Zhang, Yuezhe
    Pezzato, Corrado
    Trevisan, Elia
    Salmi, Chadi
    Corbato, Carlos Hernandez
    Alonso-Mora, Javier
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7461 - 7468
  • [38] Performance of MM-estimators on multi-modal data shows potential for improvements in consensus value estimation
    Stephen L. R. Ellison
    [J]. Accreditation and Quality Assurance, 2009, 14 : 411 - 419
  • [39] Fusing biomedical multi-modal data for exploratory data analysis
    Martin, Christian
    Deters, Harmen grosse
    Nattkemper, Tim W.
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 798 - 807
  • [40] FUSION OF MULTI-MODAL NEUROIMAGING DATA AND ASSOCIATION WITH COGNITIVE DATA
    LoPresto, Mark D.
    Akhonda, M. A. B. S.
    Calhoun, Vince D.
    Adali, Tülay
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,