Consensus Inference with Multilayer Graphs for Multi-modal Data

被引:0
|
作者
Ramamurthy, Karthikeyan Natesan [1 ]
Thiagarajan, Jayaraman J. [2 ]
Sridhar, Rahul [3 ]
Kothandaraman, Premnishanth
Nachiappan, Ramanathan
机构
[1] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] SSN Coll Engn, Madras, Tamil Nadu, India
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emergence of numerous modalities for data generation necessitates the development of machine learning techniques that can perform efficient inference with multi-modal data. In this paper, we present an approach to learn discriminant low-dimensional projections from supervised multi-modal data. We construct intra-and inter-class similarity graphs for each modality and optimize for consensus projections in the kernel space. Features obtained with these projections can then be used to train a classifier for consensus inference. We also provide methods for out-of-sample extensions with novel test data. Classification results with standard multi-modal data sets demonstrate the efficacy of our method.
引用
收藏
页码:1341 / 1345
页数:5
相关论文
共 50 条
  • [1] MMKG: Multi-modal Knowledge Graphs
    Liu, Ye
    Li, Hui
    Garcia-Duran, Alberto
    Niepert, Mathias
    Onoro-Rubio, Daniel
    Rosenblum, David S.
    [J]. SEMANTIC WEB, ESWC 2019, 2019, 11503 : 459 - 474
  • [2] Exploiting Correlation Consensus: Towards Subspace Clustering for Multi-modal Data
    Wang, Yang
    Lin, Xuemin
    Wu, Lin
    Zhang, Wenjie
    Zhang, Qing
    [J]. PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 981 - 984
  • [3] Fusion of Multi-Modal Underwater Ship Inspection Data with Knowledge Graphs
    Hirsch, Joseph
    Elvesaeter, Brian
    Cardaillac, Alexandre
    Bauer, Bernhard
    Waszak, Maryna
    [J]. 2022 OCEANS HAMPTON ROADS, 2022,
  • [4] ONLINE INFERENCE WITH MULTI-MODAL LIKELIHOOD FUNCTIONS
    Gerber, Mathieu
    Heine, Kari
    [J]. ANNALS OF STATISTICS, 2021, 49 (06): : 3103 - 3126
  • [5] Deep Multi-modal Learning with Cascade Consensus
    Yang, Yang
    Wu, Yi-Feng
    Zhan, De-Chuan
    Jiang, Yuan
    [J]. PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 64 - 72
  • [6] Multi-Modal Curriculum Learning over Graphs
    Gong, Chen
    Yang, Jian
    Tao, Dacheng
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2019, 10 (04)
  • [7] Multi-modal Knowledge Graphs for Recommender Systems
    Sun, Rui
    Cao, Xuezhi
    Zhao, Yan
    Wan, Junchen
    Zhou, Kun
    Zhang, Fuzheng
    Wang, Zhongyuan
    Zheng, Kai
    [J]. CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1405 - 1414
  • [8] LOW-LATENCY SPECULATIVE INFERENCE ON DISTRIBUTED MULTI-MODAL DATA STREAMS
    Li, Tianxing
    Huang, Jin
    Risinger, Erik
    Ganesan, Deepak
    [J]. GETMOBILE-MOBILE COMPUTING & COMMUNICATIONS REVIEW, 2022, 26 (03) : 23 - 26
  • [9] Co-inference for Multi-modal Scene Analysis
    Munoz, Daniel
    Bagnell, James Andrew
    Hebert, Martial
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 668 - 681
  • [10] AdaFlow: Non-blocking Inference with Heterogeneous Multi-modal Mobile Sensor Data
    Wu, Fengmin
    Liu, Sicong
    Guo, Bin
    Li, Xiaocheng
    Gao, Yuan
    Yu, Zhiwen
    [J]. 2024 IEEE COUPLING OF SENSING & COMPUTING IN AIOT SYSTEMS, CSCAIOT 2024, 2024, : 8 - 9