Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles

被引:512
|
作者
Zou, Yuan [1 ]
Hu, Xiaosong [2 ]
Ma, Hongmin [1 ]
Li, Shengbo Eben [3 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Univ Calif Berkeley, Energy Controls & Applicat Lab, Berkeley, CA 94720 USA
[3] Tsinghua Univ, Dept Automot Engn, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric vehicles; Lithium-ion battery; Kalman filter; Recursive least squares; State of charge; State of health; OF-CHARGE; MANAGEMENT-SYSTEMS; CAPACITY FADE; PART; MODEL; PACKS; PARAMETER;
D O I
10.1016/j.jpowsour.2014.09.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combined SOC (State Of Charge) and SOH (State Of Health) estimation method over the lifespan of a lithium-ion battery is proposed. First, the SOC dependency of the nominal parameters of a first-order RC (resistor-capacitor) model is determined, and the performance degradation of the nominal model over the battery lifetime is quantified. Second, two Extended Kalman Filters with different time scales are used for combined SOC/SOH monitoring: the SOC is estimated in real-time, and the SOH (the capacity and internal ohmic resistance) is updated offline. The time scale of the SOH estimator is determined based on model accuracy deterioration. The SOC and SOH estimation results are demonstrated by using large amounts of testing data over the battery lifetime. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:793 / 803
页数:11
相关论文
共 50 条
  • [21] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306
  • [22] A Robust State of Charge Estimation Approach Based on Nonlinear Battery Cell Model for Lithium-Ion Batteries in Electric Vehicles
    Kim, Wooyong
    Lee, Pyeong-Yeon
    Kim, Jonghoon
    Kim, Kyung-Soo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5638 - 5647
  • [23] Estimation of Lithium-Ion Battery State of Charge for Electric Vehicles Based on Dual Extended Kalman Filter
    Fang, Yu
    Xiong, Rui
    Wang, Jun
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 574 - 579
  • [24] Battery cell modeling and online estimation of the state of charge of a lithium-ion battery
    Tsai, I-Haur
    Yu, Kuan-Hsun
    Tseng, Alexander
    Yen, Jia-Yush
    Fu, Tseng-Ti
    Huang, Evan
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (05) : 412 - 418
  • [25] A Study on State of Charge and State of Health Estimation in Consideration of Lithium-Ion Battery Aging
    Choi, Woongchul
    SUSTAINABILITY, 2020, 12 (24) : 1 - 11
  • [26] Lithium-ion Battery State of Charge/State of Health Estimation Using SMO for EVs
    Lin, Cheng
    Xing, Jilei
    Tang, Aihua
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [28] Study on the estimation of the state of charge of lithium-ion battery
    Yuan, Baohe
    Zhang, Binger
    Yuan, Xiang
    An, Zheng
    Chen, Guoxi
    Chen, Lulu
    Luo, Shijun
    ELECTROCHIMICA ACTA, 2024, 491
  • [29] Modeling and state of charge estimation of lithium-ion battery
    Xi-Kun Chen
    Dong Sun
    Advances in Manufacturing, 2015, 3 : 202 - 211
  • [30] Review of lithium-ion battery state of charge estimation
    Ning Li
    Yu Zhang
    Fuxing He
    Longhui Zhu
    Xiaoping Zhang
    Yong Ma
    Shuning Wang
    GlobalEnergyInterconnection, 2021, 4 (06) : 619 - 630