Parameters optimization of selected casting processes using teaching-learning-based optimization algorithm

被引:58
|
作者
Rao, R. Venkata [1 ]
Kalyankar, V. D. [1 ]
Waghmare, G. [1 ]
机构
[1] SV Natl Inst Technol, Dept Mech Engn, Surat 395007, Gujarat, India
关键词
Parameter optimization; Squeeze casting; Die casting; Continuous casting; Mathematical models; TLBO algorithm; HEURISTIC-SEARCH TECHNIQUE; SQUEEZE-CAST; MULTIOBJECTIVE OPTIMIZATION; GENETIC ALGORITHM; HEAT-TRANSFER; DIE; MICROSTRUCTURE; DESIGN; SYSTEM; SPRAY;
D O I
10.1016/j.apm.2014.04.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, mathematical models of three important casting processes are considered namely squeeze casting, continuous casting and die casting for the parameters optimization of respective processes. A recently developed advanced optimization algorithm named as teaching-learning-based optimization (TLBO) is used for the parameters optimization of these casting processes. Each process is described with a suitable example which involves respective process parameters. The mathematical model related to the squeeze casting is a multi-objective problem whereas the model related to the continuous casting is multi-objective multi-constrained problem and the problem related to the die casting is a single objective problem. The mathematical models which are considered in the present work were previously attempted by genetic algorithm and simulated annealing algorithms. However, attempt is made in the present work to minimize the computational efforts using the TLBO algorithm. Considerable improvements in results are obtained in all the cases and it is believed that a global optimum solution is achieved in the case of die casting process. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:5592 / 5608
页数:17
相关论文
共 50 条
  • [21] Teaching-Learning-Based Modified Collaborative Optimization Algorithm
    Fakharzadeh, A. R.
    Khosravi, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (04) : 1 - 18
  • [22] Comments on "A note on teaching-learning-based optimization algorithm"
    Waghmare, Gajanan
    INFORMATION SCIENCES, 2013, 229 : 159 - 169
  • [23] Teaching-Learning-Based Optimization Algorithm in Dynamic Environments
    Zou, Feng
    Wang, Lei
    Hei, Xinhong
    Jiang, Qiaoyong
    Yang, Dongdong
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I (SEMCCO 2013), 2013, 8297 : 389 - 400
  • [24] A modified teaching-learning-based optimization algorithm for numerical function optimization
    Niu, Peifeng
    Ma, Yunpeng
    Yan, Shanshan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (06) : 1357 - 1371
  • [25] Economic Dispatch Using an Efficient Teaching-Learning-Based Optimization Algorithm
    Silva, Fernanda L.
    Castro, Carlos A.
    PROCEEDINGS OF THE 7TH BRAZILIAN TECHNOLOGY SYMPOSIUM (BTSYM'21): EMERGING TRENDS IN SYSTEMS ENGINEERING MATHEMATICS AND PHYSICAL SCIENCES, VOL 2, 2022, 295 : 299 - 310
  • [26] Estimating Parameters of Van Genuchten Equation Based on Teaching-Learning-Based Optimization Algorithm
    Gu, Fahui
    Li, Kangshun
    Yang, Lei
    Li, Wei
    COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, (ISICA 2015), 2016, 575 : 335 - 342
  • [27] Elitist teaching-learning-based optimization algorithm based on feedback
    Yu, Kun-Jie
    Wang, Xin
    Wang, Zhen-Lei
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (09): : 1976 - 1983
  • [28] Isogeometric shape optimization of an acoustic horn using the teaching-learning-based optimization (TLBO) algorithm
    Ummidivarapu, Vinay K.
    Voruganti, Hari K.
    Khajah, Tahsin
    Bordas, Stephane Pierre Alain
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 80
  • [29] Optimization of Selected Casting Processes Using Jaya algorithm
    Rao, R. Venkata
    Rai, Dhiraj P.
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (10) : 11056 - 11067
  • [30] Solving chiller loading optimization problems using an improved teaching-learning-based optimization algorithm
    Duan, Pei-yong
    Li, Jun-qing
    Wang, Yong
    Sang, Hong-yan
    Jia, Bao-xian
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (01): : 65 - 77