Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis

被引:13
|
作者
Martinez-Archundia, Marlet [1 ]
Correa-Basurto, Jose [1 ]
Montano, Sarita [2 ]
Rosas-Trigueros, Jorge L. [3 ]
机构
[1] Inst Politecn Nacl, Escuela Super Med, Secc Estudios Posgrad & Invest, Lab Modelado Mol & Bioinformat, Mexico City, DF, Mexico
[2] Univ Autonoma Sinaloa, Fac Ciencias Quim Biol, Culiacan, Sinaloa, Mexico
[3] Inst Politecn Nacl, Escuela Super Comp, Secc Estudios Posgrad & Invest, Lab Transdisciplinario Invest Sistemas Evolut, Av Juan de Dios Batiz, Mexico City 07738, DF, Mexico
来源
关键词
Adenosine receptors; conformational changes; principal component analysis; collective motions; ligand binding; MOLECULAR-DYNAMICS SIMULATIONS; IONIC LOCK; BETA(2)-ADRENERGIC RECEPTOR; CONFORMATIONAL-CHANGES; CRYSTAL-STRUCTURE; PROTEIN DYNAMICS; ACTIVATION; RECOGNITION; INSIGHTS; INTEGRATION;
D O I
10.1080/07391102.2018.1564700
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Adenosine receptors (ARs) belong to family A of GPCRs that are involved in many diseases, including cerebral and cardiac ischemic diseases, immune and inflammatory disorders, etc. Thus, they represent important therapeutic targets to treat these conditions. Computational techniques such as molecular dynamics (MD) simulations permit researchers to obtain structural information about these proteins, and principal component analysis (PCA) allows for the identification of collective motions. There are available structures for the active form (3QAK) and the inactive form (3EML) of A2AR which permit us to gain insight about their activation/inactivation mechanism. In this work, we have proposed an inverse strategy using MD simulations where the active form was coupled to the antagonist caffeine and the inactive form was coupled to adenosine agonist. Moreover, we have included four reported thermostabilizing mutations in the inactive form to study A2AR structural differences under different conditions. Some observations stand out from the PCA studies. For instance, the apo structures showed remarkable similarities, and the principal components (PCs) were rearranged in a ligand-dependent manner. Additionally, the active conformation was less stable compared to the inactive one. Some PCs inverted their direction in the presence of a ligand, and comparison of the PCs between 3EML and 3EML_ADN showed that adenosine induced major changes in the structure of A2AR. Rearrangement of PCs precedes and drives conformational changes that occur after ligand binding. Knowledge about these conformational changes provides important insights about the activity of A2AR.
引用
收藏
页码:4685 / 4700
页数:16
相关论文
共 50 条
  • [21] Binding of the prototypical adenosine A2A receptor agonist CGS 21680 to the cerebral cortex of adenosine A1 and A2A receptor knockout mice
    Lopes, LV
    Halldner, L
    Rebola, N
    Johansson, B
    Ledent, C
    Chen, JF
    Fredholm, BB
    Cunha, RA
    BRITISH JOURNAL OF PHARMACOLOGY, 2004, 141 (06) : 1006 - 1014
  • [22] Ligand-dependent cholesterol interactions with the human A2A adenosine receptor
    Lee, Ji Young
    Patel, Rohan
    Lyman, Edward
    CHEMISTRY AND PHYSICS OF LIPIDS, 2013, 169 : 39 - 45
  • [23] Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor
    Li, Jianing
    Jonsson, Amanda L.
    Beuming, Thijs
    Shelley, John C.
    Voth, Gregory A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (23) : 8749 - 8759
  • [24] Ligand Binding and Subtype Selectivity of the Human A2A Adenosine Receptor IDENTIFICATION AND CHARACTERIZATION OF ESSENTIAL AMINO ACID RESIDUES
    Jaakola, Veli-Pekka
    Lane, J. Robert
    Lin, Judy Y.
    Katritch, Vsevolod
    IJzerman, Adriaan P.
    Stevens, Raymond C.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (17) : 13032 - 13044
  • [25] RESIDUE HIS264 IN EXTRACELLULAR LOOP 3 OF ADENOSINE A2A RECEPTOR IS CRITICAL FOR THE KINETICS OF LIGAND BINDING
    Rodriguez Carracedo, J.
    de la Fuente Gonzalez, R. A.
    Varela Lara, I
    Brea Floriani, J.
    Rodriguez Diaz, D.
    Gutierrez-de-Teran Castanon, H.
    Loza Garcia, M., I
    Castro Perez, M.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2014, 115 : 22 - 22
  • [26] Tumor Immunotherapy Using A2A Adenosine Receptor Antagonists
    Zhang, Jinfeng
    Yan, Wenzhong
    Duan, Wenwen
    Wuthrich, Kurt
    Cheng, Jianjun
    PHARMACEUTICALS, 2020, 13 (09) : 1 - 14
  • [27] Water Network Perturbation in Ligand Binding: Adenosine A2A Antagonists as a Case Study
    Bortolato, Andrea
    Tehan, Ben G.
    Bodnarchuk, Michael S.
    Essex, Jonathan W.
    Mason, Jonathan S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (07) : 1700 - 1713
  • [28] Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor
    Eddy, Matthew T.
    Lee, Ming-Yue
    Gao, Zhan-Guo
    White, Kate L.
    Didenko, Tatiana
    Horst, Reto
    Audet, Martin
    Stanczak, Pawel
    McClary, Kyle M.
    Han, Gye Won
    Jacobson, Kenneth A.
    Stevens, Raymond C.
    Wuthrich, Kurt
    CELL, 2018, 172 (1-2) : 68 - +
  • [29] The adenosine A2A receptor interacts with the actin-binding protein α-actinin
    Burgueño, J
    Blake, DJ
    Benson, MA
    Tinsley, CL
    Esapa, CT
    Canela, EI
    Penela, P
    Mallol, J
    Mayro, F
    Lluis, C
    Franco, R
    Ciruela, F
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (39) : 37545 - 37552
  • [30] Sodium Ion Binding Pocket Mutations and Adenosine A2A Receptor Function
    Massink, Arnault
    Gutierrez-de-Teran, Hugo
    Lenselink, Eelke B.
    Zacarias, Natalia V. Ortiz
    Xia, Lizi
    Heitman, Laura H.
    Katritch, Vsevolod
    Stevens, Raymond C.
    IJzerman, Adriaan P.
    MOLECULAR PHARMACOLOGY, 2015, 87 (02) : 305 - 313