Step-by-step decoding algorithm for Reed-Solomon codes

被引:11
|
作者
Chen, TC [1 ]
Wei, CH
Wei, SW
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30050, Taiwan
[2] Chung Hua Univ, Dept Elect Engn, Hsinchu 30067, Taiwan
来源
IEE PROCEEDINGS-COMMUNICATIONS | 2000年 / 147卷 / 01期
关键词
D O I
10.1049/ip-com:20000149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new step-by-step decoding algorithm for decoding Reed-Solomon codes over GF(2(m)) is presented. Based on several properties of the syndrome matrices, the new step-by-step decoding algorithm can directly determine whether every received symbol is an error locator, The detection of error location is based only on the determinant of a v x v syndrome matrix, where v is the number of errors. When an error location is found, its corresponding error value can also be determined by performing a determinant division operation between two syndrome matrices. The new decoding algorithm can significantly reduce computation complexity and improve the decoding speed compared with the conventional step-by-step decoding algorithm.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 50 条
  • [21] Fast Error and Erasure Decoding Algorithm for Reed-Solomon Codes
    Tang, Nianqi
    Chen, Chao
    Han, Yunghsiang S.
    [J]. IEEE COMMUNICATIONS LETTERS, 2024, 28 (04) : 759 - 762
  • [22] Hybrid list decoding and Kaneko algorithm of Reed-Solomon codes
    Jin, W.
    Xu, H.
    Takawira, F.
    [J]. IEE PROCEEDINGS-COMMUNICATIONS, 2006, 153 (05): : 597 - 602
  • [23] Decoding Reed-Solomon codes using Euclid’s algorithm
    Priti Shankar
    [J]. Resonance, 2007, 12 (4) : 37 - 51
  • [24] Soft Reed-Solomon decoding for concatenated codes
    Panigrahi, S
    Szczecinski, LL
    Labeau, F
    [J]. CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1643 - +
  • [25] Power Decoding of Reed-Solomon Codes Revisited
    Nielsen, Johan S. R.
    [J]. CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 297 - 305
  • [26] Soft decision decoding of Reed-Solomon codes
    Ponnampalam, V
    Vucetic, B
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (11) : 1758 - 1768
  • [27] Unique Decoding of Certain Reed-Solomon Codes
    Shen, Lin-Zhi
    Fu, Fang-Wei
    Guang, Xuan
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (12): : 2728 - 2732
  • [28] Interpolation in list decoding of Reed-Solomon codes
    P. V. Trifonov
    [J]. Problems of Information Transmission, 2007, 43 : 190 - 198
  • [29] Stochastic Chase Decoding of Reed-Solomon Codes
    Leroux, Camille
    Hemati, Saied
    Mannor, Shie
    Gross, Warren J.
    [J]. IEEE COMMUNICATIONS LETTERS, 2010, 14 (09) : 863 - 865
  • [30] Successive Cancellation Decoding of Reed-Solomon Codes
    Trifonov, P. V.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (04) : 303 - 312