Resonant normal form for even periodic FPU chains

被引:0
|
作者
Henrici, Andreas [1 ]
Kappeler, Thomas [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate periodic FPU chains with an even number of particles. We show that near the equilibrium point, any such chain admits a resonant Birkhoff normal form of order four which is completely integrable-an important fact which helps explain the numerical experiments of Fermi, Pasta, and Ulam. We analyze the moment map of the integrable approximation of an even FPU chain. Unlike the case of odd FPU chains these integrable systems (generically) exhibit hyperbolic dynamics. As an application we prove that any FPU chain with Dirichlet boundary conditions admits a Birkhoff normal form up to order four and show that a KAM theorem applies.
引用
收藏
页码:1025 / 1056
页数:32
相关论文
共 50 条
  • [21] Normal Form of a Hamiltonian System with a Periodic Perturbation
    A. D. Bruno
    Computational Mathematics and Mathematical Physics, 2020, 60 : 36 - 52
  • [22] Birkhoff normal form for the periodic Toda lattice
    Henrici, Andreas
    Kappeler, Thomas
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 11 - 29
  • [23] Normal Form of a Hamiltonian System with a Periodic Perturbation
    Bruno, A. D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (01) : 36 - 52
  • [24] On the periodic and antiperiodic aspects of the Floquet normal form
    Novaes, Douglas D.
    Pereira, Pedro C. C. R.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 190
  • [25] 'EVEN IN CHAINS'
    ROYSTER, PM
    OBSIDIAN-BLACK LITERATURE IN REVIEW, 1977, 3 (02): : 38 - 38
  • [26] Riemann solvers and undercompressive shocks of convex FPU chains
    Herrmann, Michael
    Rademacher, Jens D. M.
    NONLINEARITY, 2010, 23 (02) : 277 - 304
  • [27] Regular and chaotic recurrence in FPU cell-chains
    Verhulst, Ferdinand
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 763 - 770
  • [28] Computation of the simplest normal form of a resonant double Hopf bifurcation system with the complex normal form method
    Wei Wang
    Qi-Chang Zhang
    Nonlinear Dynamics, 2009, 57 : 219 - 229
  • [29] Computation of the simplest normal form of a resonant double Hopf bifurcation system with the complex normal form method
    Wang, Wei
    Zhang, Qi-Chang
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 219 - 229
  • [30] Non-Quasi-Periodic Normal Form Theory
    Pinzari, Gabriella
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (06): : 841 - 864