Resonant normal form for even periodic FPU chains

被引:0
|
作者
Henrici, Andreas [1 ]
Kappeler, Thomas [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate periodic FPU chains with an even number of particles. We show that near the equilibrium point, any such chain admits a resonant Birkhoff normal form of order four which is completely integrable-an important fact which helps explain the numerical experiments of Fermi, Pasta, and Ulam. We analyze the moment map of the integrable approximation of an even FPU chain. Unlike the case of odd FPU chains these integrable systems (generically) exhibit hyperbolic dynamics. As an application we prove that any FPU chain with Dirichlet boundary conditions admits a Birkhoff normal form up to order four and show that a KAM theorem applies.
引用
收藏
页码:1025 / 1056
页数:32
相关论文
共 50 条
  • [1] Symmetry and resonance in periodic FPU chains
    Rink, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 218 (03) : 665 - 685
  • [2] Symmetry and Resonance in Periodic FPU Chains
    Bob Rink
    Communications in Mathematical Physics, 2001, 218 : 665 - 685
  • [3] Results on Normal Forms for FPU Chains
    Andreas Henrici
    Thomas Kappeler
    Communications in Mathematical Physics, 2008, 278 : 145 - 177
  • [4] Results on normal forms for FPU chains
    Henrici, Andreas
    Kappeler, Thomas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) : 145 - 177
  • [5] Near-integrability of periodic FPU-chains
    Rink, B
    Verhulst, F
    PHYSICA A, 2000, 285 (3-4): : 467 - 482
  • [6] On intense energy exchange and localization in periodic FPU dimer chains
    Starosvetsky, Y.
    Manevitch, L. I.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 264 : 66 - 79
  • [7] On the Periodic Orbits of Four-Particle Time-Dependent FPU Chains
    Tang, Hongwu
    Xing, Mingyan
    Liu, Qihuai
    Jiang, Guirong
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [8] Localization of energy in FPU chains
    Berchialla, L
    Galgani, L
    Giorgilli, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (04) : 855 - 866
  • [9] On the continuation of degenerate periodic orbits via normal form: Lower dimensional resonant tori
    Sansottera, M.
    Danesi, V
    Penati, T.
    Paleari, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [10] On the continuation of degenerate periodic orbits via normal form: full dimensional resonant tori
    Penati, T.
    Sansottera, M.
    Danesi, V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 198 - 224