BIFURCATION OF LIMIT CYCLES FROM A QUADRATIC REVERSIBLE CENTER WITH THE UNBOUNDED ELLIPTIC SEPARATRIX

被引:0
|
作者
Peng, L. [1 ]
Lei, Y. [2 ,3 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, LIMB, Minist Educ, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] 24th Middle Sch Beijing, Beijing, Peoples R China
来源
关键词
a quadratic reversible and non-Hamiltonian center; bifurcation of limit cycles; a period annulus; the Abelian integral; HAMILTONIAN-SYSTEMS; HETEROCLINIC LOOPS; INTEGRABLE SYSTEM; HOMOCLINIC LOOP; HILBERT PROBLEM; PERIOD ANNULI; PERTURBATIONS; CYCLICITY; SADDLE; N=2;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the Poincare disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard-Fuchs equations and studying the geometric properties of two planar curves, we prove that the maximal number of limit cycles bifurcating from the period annulus under small quadratic perturbations is two.
引用
收藏
页码:1223 / 1248
页数:26
相关论文
共 50 条
  • [31] Limit Cycles for a Perturbation of a Quadratic Center with Symmetry
    Cherkas, L. A.
    DIFFERENTIAL EQUATIONS, 2011, 47 (08) : 1077 - 1087
  • [32] Bifurcation of Limit Cycles from a Quasi-Homogeneous Degenerate Center
    Geng, Fengjie
    Lian, Hairong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [33] Bifurcation of Limit Cycles from a Polynomial Non-global Center
    Gasull, A.
    Prohens, R.
    Torregrosa, J.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 945 - 960
  • [34] Bifurcation of Limit Cycles from a Polynomial Non-global Center
    A. Gasull
    R. Prohens
    J. Torregrosa
    Journal of Dynamics and Differential Equations, 2008, 20 : 945 - 960
  • [35] Limit Cycles Generated by Perturbing a Kind of Quadratic Reversible Center of a Piecewise Polynomial Differential System
    Si, Zheng
    Zhao, Liqin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [36] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Diferential Systems
    Gui Lin JI
    Chang Jian LIU
    Peng Heng LI
    Acta Mathematica Sinica,English Series, 2022, (03) : 591 - 611
  • [37] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Ji, Gui Lin
    Liu, Chang Jian
    Li, Peng Heng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (03) : 591 - 611
  • [38] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Gui Lin Ji
    Chang Jian Liu
    Peng Heng Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 591 - 611
  • [39] Some bifurcation diagrams for limit cycles of quadratic differential systems
    Chan, HSY
    Chung, KW
    Qi, DW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01): : 197 - 206
  • [40] Center conditions and limit cycles for the perturbation of an elliptic sector
    Gentes, Mathieu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2009, 133 (06): : 597 - 643