1.3 mu m strain-compensated InAsP/InGaP electroabsorption modulator structure grown by atmospheric pressure metal-organic vapor epitaxy

被引:16
|
作者
Ougazzaden, A
Devaux, F
Rao, EVK
Silvestre, L
Patriarche, G
机构
[1] France Telecom, CNET/PAB, 92225 Bagneux Cedex
关键词
D O I
10.1063/1.119319
中图分类号
O59 [应用物理学];
学科分类号
摘要
High quality 15-period strain-compensated InAsP/InGaP electroabsorption (EA) modulator structures have been grown by atmospheric pressure metal-organic vapor epitaxy. The incorporation of large compressive strain (similar to 1.7%) in the InAsP wells and tensile strain (similar to-1.8%) in the InGaP barriers necessitated the growth of a few InP monolayers between the wells and barriers. The high structural quality of such samples has been demonstrated by (cross-sectional transmission electron microscopy analysis to be free of misfit dislocations and thickness undulations. The detection of a sharp and abrupt room-temperature exciton peak both in the photoconductivity and photoluminescence measurements further confirmed their excellent optical quality. 100 mu m cavity length EA modulators fabricated in these structures exhibited excellent performances namely, an extinction ratio higher than 20 dB for 2.5 V drive voltage, a 3 dB bandwidth over 20 GHz, and low coupling losses to fiber (less than 2.5 dB per facet). (C) 1997 American Institute of Physics.
引用
收藏
页码:96 / 98
页数:3
相关论文
共 50 条
  • [31] High-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy
    Oliva, R.
    Ibanez, J.
    Artus, L.
    Cusco, R.
    Zuniga-Perez, J.
    Munoz-Sanjose, V.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (05)
  • [32] High-pressure Raman scattering of CdO thin films grown by metal-organic vapor phase epitaxy
    Oliva, R., 1600, American Institute of Physics Inc. (113):
  • [33] 1.3 μm InAs/GaAs quantum dots directly capped with GaAs grown by metal-organic chemical vapor deposition
    Huang, KF
    Hsieh, TP
    Yeh, NT
    Ho, WJ
    Chyi, JI
    Wu, MC
    JOURNAL OF CRYSTAL GROWTH, 2004, 264 (1-3) : 128 - 133
  • [34] InAsSb InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition
    Lane, B
    Wu, Z
    Stein, A
    Diaz, J
    Razeghi, M
    APPLIED PHYSICS LETTERS, 1999, 74 (23) : 3438 - 3440
  • [35] Spectroscopic ellipsometry study of GaAs1-xBix material grown on GaAs substrate by atmospheric pressure metal-organic vapor-phase epitaxy
    Ben Sedrine, Nebiha
    Moussa, Imed
    Fitouri, Hedi
    Rebey, Ahmed
    El Jani, Belgacem
    Chtourou, Radhouane
    APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [36] EFFECT OF METAL-ORGANIC COMPOSITION FLUCTUATION ON THE ATMOSPHERIC-PRESSURE METAL-ORGANIC VAPOR-PHASE EPITAXY GROWTH OF GAALAS/GAAS AND GAINAS/INP STRUCTURES
    OSSART, P
    BRASIL, MJS
    CARDOSO, LP
    GANIERE, JD
    HORIUCHI, L
    DECOBERT, J
    SACILOTTI, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1991, 30 (5A): : L783 - L785
  • [37] Effect of GaP and GaP/InGaP insertion layers on the structural and optical properties of InP quantum dots grown by metal-organic vapor phase epitaxy
    Han, S. S.
    Higo, A.
    Yunpeng, W.
    Deura, M.
    Sugiyama, M.
    Nakano, Y.
    Panyakeow, S.
    Ratanathammaphan, S.
    MICROELECTRONIC ENGINEERING, 2013, 112 : 143 - 148
  • [38] Alternative microstructure of GaN nucleation layers grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate
    Cheng, LS
    Zhang, GY
    Yu, DP
    Zhang, Z
    APPLIED PHYSICS LETTERS, 1997, 70 (11) : 1408 - 1410
  • [39] InGaN laser diodes grown on SiC substrate using low-pressure metal-organic vapor phase epitaxy
    Kuramata, A
    Domen, K
    Soejima, R
    Horino, K
    Kubota, S
    Tanahashi, T
    NITRIDE SEMICONDUCTORS, 1998, 482 : 1185 - 1196
  • [40] CHARACTERIZATION OF III-V-MULTILAYERS GROWN BY LOW-PRESSURE METAL-ORGANIC VAPOR-PHASE EPITAXY
    JAGADISH, C
    CLARK, A
    LI, G
    LARSEN, CA
    HAUSER, N
    PETRAVIC, M
    THOMPSON, TD
    HALSTEAD, T
    WILLIAMS, JS
    AUSTRALIAN JOURNAL OF PHYSICS, 1993, 46 (03): : 435 - 445