Extendable and explainable deep learning for pan-cancer radiogenomics research

被引:9
|
作者
Liu, Qian [1 ,2 ,3 ]
Hu, Pingzhao [1 ,2 ]
机构
[1] Univ Manitoba, Dept Biochem & Med Genet, Winnipeg, MB R3E 0W3, Canada
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3E 0W3, Canada
[3] Univ Manitoba, Dept Stat, Winnipeg, MB R3E 0W3, Canada
关键词
Radiogenomics;   Pan-cancer; Explainable deep learning; Extendable deep learning; CONVOLUTIONAL NEURAL-NETWORK; R-PACKAGE; GRADE GLIOMAS; ARTIFICIAL-INTELLIGENCE; OPEN CHROMATIN; RADIOMICS; IMAGES; CLASSIFICATION; INFORMATION; METHYLATION;
D O I
10.1016/j.cbpa.2021.102111
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Radiogenomics is a field where medical images and genomic profiles are jointly analyzed to answer critical clinical questions. Specifically, people want to identify non-invasive imaging bio-markers that are associated with both genomic features and clinical outcomes. Deep learning is an advanced computer science technique that has been applied in many fields, including medical image and genomic data analysis. This review summarizes the current state of deep learning in pan-cancer radiogenomic research, discusses its limitations, and indicates the potential future directions. Traditional machine learning in radiomics, genomics, and radiogenomics have also been briefly discussed. We also summarize the main pan-cancer radiogenomic research resources. Two characteristics of deep learning are emphasized when discussing its appli-cation to pan-cancer radiogenomics, which are extendibility and explainability.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A pan-cancer analysis of the microbiome in metastatic cancer
    Battaglia, Thomas W.
    Mimpen, Iris L.
    Traets, Joleen J. H.
    van Hoeck, Arne
    Zeverijn, Laurien J.
    Geurts, Birgit S.
    de Wit, Gijs F.
    Noe, Michael
    Hofland, Ingrid
    Vos, Joris L.
    Cornelissen, Sten
    Alkemade, Maartje
    Broeks, Annegien
    Zuur, Charlotte L.
    Cuppen, Edwin
    Wessels, Lodewyk
    de Haar, Joris van
    Voest, Emile
    [J]. CELL, 2024, 187 (09)
  • [42] Machine Learning-Based Comparative Analysis of Pan-Cancer and Pan-Normal Tissues Identifies Pan-Cancer Tissue-Enriched circRNAs Related to Cancer Mutations as Potential Exosomal Biomarkers
    Wang, Xuezhu
    Dong, Yucheng
    Wu, Zilong
    Wang, Guanqun
    Shi, Yue
    Zheng, Yongchang
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [43] Pan-cancer analysis of whole genomes
    Campbell, Peter J.
    Getz, Gad
    Korbel, Jan O.
    Stuart, Joshua M.
    Jennings, Jennifer L.
    Stein, Lincoln D.
    Perry, Marc D.
    Nahal-Bose, Hardeep K.
    Ouellette, B. F. Francis
    Li, Constance H.
    Rheinbay, Esther
    Nielsen, G. Petur
    Sgroi, Dennis C.
    Wu, Chin-Lee
    Faquin, William C.
    Deshpande, Vikram
    Boutros, Paul C.
    Lazar, Alexander J.
    Hoadley, Katherine A.
    Louis, David N.
    Dursi, L. Jonathan
    Yung, Christina K.
    Bailey, Matthew H.
    Saksena, Gordon
    Raine, Keiran M.
    Buchhalter, Ivo
    Kleinheinz, Kortine
    Schlesner, Matthias
    Zhang, Junjun
    Wang, Wenyi
    Wheeler, David A.
    Ding, Li
    Simpson, Jared T.
    O'Connor, Brian D.
    Yakneen, Sergei
    Ellrott, Kyle
    Miyoshi, Naoki
    Butler, Adam P.
    Royo, Romina
    Shorser, Solomon, I
    Vazquez, Miguel
    Rausch, Tobias
    Tiao, Grace
    Waszak, Sebastian M.
    Rodriguez-Martin, Bernardo
    Shringarpure, Suyash
    Wu, Dai-Ying
    Demidov, German M.
    Delaneau, Olivier
    Hayashi, Shuto
    [J]. NATURE, 2020, 578 (7793) : 82 - +
  • [44] Pan-cancer atlas of intratumour heterogeneity
    Minton, Kirsty
    [J]. NATURE REVIEWS GENETICS, 2023, 24 (08) : 487 - 487
  • [45] The pan-cancer pathological regulatory landscape
    Matias M. Falco
    Marta Bleda
    José Carbonell-Caballero
    Joaquín Dopazo
    [J]. Scientific Reports, 6
  • [46] A pan-cancer compendium of chromosomal instability
    Ruben M. Drews
    Barbara Hernando
    Maxime Tarabichi
    Kerstin Haase
    Tom Lesluyes
    Philip S. Smith
    Lena Morrill Gavarró
    Dominique-Laurent Couturier
    Lydia Liu
    Michael Schneider
    James D. Brenton
    Peter Van Loo
    Geoff Macintyre
    Florian Markowetz
    [J]. Nature, 2022, 606 : 976 - 983
  • [47] A pan-cancer analysis of synonymous mutations
    Yogita Sharma
    Milad Miladi
    Sandeep Dukare
    Karine Boulay
    Maiwen Caudron-Herger
    Matthias Groß
    Rolf Backofen
    Sven Diederichs
    [J]. Nature Communications, 10
  • [48] Second call for pan-cancer analysis
    不详
    [J]. NATURE GENETICS, 2014, 46 (12) : 1251 - 1251
  • [49] A pan-cancer analysis of synonymous mutations
    Sharma, Yogita
    Miladi, Milad
    Dukare, Sandeep
    Boulay, Karine
    Caudron-Herger, Maiwen
    Gross, Matthias
    Backofen, Rolf
    Diederichs, Sven
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [50] A pan-cancer analysis of prognostic genesl
    Anaya, Jordan
    Reon, Brian
    Chen, Wei-Min
    Bekiranov, Stefan
    Duna, Anindya
    [J]. PEERJ, 2016, 4