Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Forster Resonance Energy Transfer Experiments

被引:18
|
作者
Vandenberk, Niels [1 ]
Barth, Anders [2 ,3 ]
Borrenberghs, Doortje [1 ]
Hofkens, Johan [1 ]
Hendrix, Jelle [1 ,4 ,5 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Div Mol Imaging & Photon, Lab Photochem & Spect, Celestijnenlaan 200F, B-3001 Leuven, Belgium
[2] Ludwig Maximilians Univ Munchen, Nanosyst Initiat Munich, Munich Ctr Integrated Prot Sci, Dept Chem,Phys Chem, D-80539 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Ctr Nanosci, D-80539 Munich, Germany
[4] Hasselt Univ, Adv Opt Microscopy Ctr, Dynam Bioimaging Lab, Agoralaan BIOMED C, B-3590 Diepenbeek, Belgium
[5] Hasselt Univ, Biomed Res Inst, Agoralaan BIOMED C, B-3590 Diepenbeek, Belgium
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2018年 / 122卷 / 15期
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; FRET MEASUREMENTS; DYNAMICS; IDENTIFICATION; EXCITATION; LIFETIME; SYSTEM; CY5; DISTRIBUTIONS; FLUCTUATIONS;
D O I
10.1021/acs.jpcb.8b00108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Forster resonance energy transfer (FRET) is a powerful tool to probe molecular interactions, activity, analytes, forces, and structure. Single-molecule (sm)FRET additionally allows real-time quantifications of conformation and conformational dynamics. smFRET robustness critically depends on the employed dyes, yet a systematic comparison of different dye pairs is lacking. Here, we evaluated blue (Atto488 and Alexa488) and far-red (Atto647N, Alexa647, StarRed, and Atto655) dyes using confocal smFRET spectroscopy on freely diffusing double-stranded (ds)DNA molecules. Via ensemble analyses (correlation, lifetime, and anisotropy) of single labeled dsDNA, we find that Alexa488 and Atto647N are overall the better dyes, although the latter interacts with DNA. Via burstwise analyses of double-labeled dsDNA with interdye distances spanning the complete FRET-sensitive range (3.5-9 nm), we show that none of the dye pairs stands out: distance accuracies were generally <1 nm and precision was similar to 0.5 nm. Finally, excitation of photoblinking dyes such as Alexa647 influences their fluorescence quantum yield, which has to be taken into account in distance measurements and leads to FRET dynamics. Although dye performance might differ in experiments on immobilized molecules, our combined ensemble and single-molecule approach is a robust characterization tool for all types of smFRET experiments. This is especially important when smFRET is used for atomic-scale distance measurements.
引用
收藏
页码:4249 / 4266
页数:18
相关论文
共 50 条
  • [21] Fluorescence resonance energy transfer at the single-molecule level
    Taekjip Ha
    Jingyi Fei
    Sonja Schmid
    Nam Ki Lee
    Ruben L. Gonzalez
    Sneha Paul
    Sanghun Yeou
    Nature Reviews Methods Primers, 4
  • [22] Fluorescence resonance energy transfer at the single-molecule level
    Morneau-Brosnan, Dominique
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [23] A Bayesian Nonparametric Approach to Single Molecule Forster Resonance Energy Transfer
    Sgouralis, Ioannis
    Madaan, Shreya
    Djutanta, Franky
    Kha, Rachael
    Hariadi, Rizal F.
    Presse, Steve
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (03): : 675 - 688
  • [24] The Orientation Factor in Single-Molecule Forster-Type Resonance Energy Transfer, with Examples for Conformational Transitions in Proteins
    Yang, Haw
    ISRAEL JOURNAL OF CHEMISTRY, 2009, 49 (3-4) : 313 - 321
  • [25] Saturated Forster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging
    Deng, Suhui
    Chen, Jianfang
    Huang, Qing
    Fan, Chunhai
    Cheng, Ya
    OPTICS LETTERS, 2010, 35 (23) : 3862 - 3864
  • [26] Colorful Organic Solar Cells Employing Forster Resonance Energy Transfer Dye Molecule
    Kong, Jaemin
    Beromi, Megan Mohadjer
    Hazari, Nilay
    Taylor, Andre
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 2688 - 2690
  • [27] Nanosecond dynamics of single-molecule fluorescence resonance energy transfer
    Ariunbold, GO
    Agarwal, GS
    Wang, Z
    Scully, MO
    Walther, H
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (13): : 2402 - 2404
  • [28] Single-molecule fluorescence resonance energy transfer in molecular biology
    Sasmal, Dibyendu K.
    Pulido, Laura E.
    Kasal, Shan
    Huang, Jun
    NANOSCALE, 2016, 8 (48) : 19928 - 19944
  • [29] Catalytic single-molecule Forster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging
    Zhang, Qian
    Li, Chen-chen
    Ma, Fei
    Luo, Xiliang
    Zhang, Chun-yang
    BIOSENSORS & BIOELECTRONICS, 2022, 213
  • [30] Examinations of Antibody Structure using Single Molecule Forster Resonance Energy Transfer
    Southern, Cathrine A.
    Kelliher, Michael T.
    Agne, Ian D.
    Timoshevskaya, Irina
    Mueller, Kelly A.
    Jacks, Ramiah D.
    Hall, Ashley E.
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 445A - 445A