SYNTHESIS AND MICROSTRUCTURE OF A NOVEL TiO2 AEROGEL-TiO2 NANOWIRE COMPOSITE

被引:4
|
作者
Suzuki, Yoshikazu [1 ,2 ]
Berger, Marie-Helene [3 ]
D'Elia, Daniela [4 ]
Ilbizian, Pierre [1 ]
Beauger, Christian [1 ]
Rigacci, Arnaud [1 ]
Hochepied, Jean-Francois [4 ]
Achard, Patrick [1 ]
机构
[1] Ecole Mines Paris, Ctr Energet & Procedes EM&P, F-06904 Sophia Antipolis, France
[2] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan
[3] Ecole Mines Paris, Ctr Mat, F-91003 Evry, France
[4] Ecole Mines Paris, Ctr Energet & Procedes SCPI, F-75272 Paris, France
基金
日本学术振兴会;
关键词
TiO2; aerogel; nanowire; composite; microstructure; nanonetwork structure;
D O I
10.1142/S1793292008001222
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
TiO2 aerogel-10mol% TiO2 nanowire composite was prepared by a sol-gel technique with the addition of TiO2 nanowires to TiO2 sol, followed by supercritical drying in CO2. TiO2 nanowires (anatase with minor rutile phases) as dispersoid were prepared by a hydrothermal process followed by calcination in air at 600 degrees C. The TiO2 nanowires were dispersed in a 2-propanol/H2O/HNO3 solution, and the mixture was added drop by drop to a tetrabutyl orthotitanate [i.e. Ti (IV) n-butoxide] solution in 2-propanol. After gelation, the TiO2 alcogel TiO2 nanowire composite was dried in supercritical CO2 to obtain the final, TiO2 aerogel-TiO2 nanowire composite. TEM analysis revealed that a unique "nanowire network" structure was formed within the mesoporous aerogel matrix. The aerogel-TiO2 nanowire composite had a relatively large surface area 427m(2)/g, with mesopores similar to 16 nm in diameter and a pore of volume of 1.63 cm(3)/g.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 50 条
  • [31] Facile preparation of TiO2/ZnO composite aerogel with excellent antibacterial activities
    Suo, Hao
    Peng, Changxin
    Jing, Feng
    Yu, Shuwen
    Cui, Sheng
    Shen, Xiaodong
    MATERIALS LETTERS, 2019, 234 : 253 - 256
  • [32] The influence of TiO2 amount on the photoactivity response for the novel TiO2/BDD/carbon fiber ternary composite
    Pereira, Lania Auxiliadora
    Couto, Andrea Boldarini
    de Lima Almeida, Dalva Alves
    Ferreira, Neidenei Gomes
    DIAMOND AND RELATED MATERIALS, 2017, 75 : 18 - 24
  • [33] Effect of Structure of TiO2/Ag/TiO2 Composite Films on Their Chromaticity
    Zhao Y.-L.
    Wang X.-P.
    Wang J.-J.
    Li Y.
    Surface Technology, 2023, 52 (07): : 270 - 277
  • [34] The inverse opals of composite ZnO/TiO2 and TiO2/ZnO bilayers
    Karajz, Daniel Attila
    Fonay, Csenge Anna
    Parditka, Bence
    Erdelyi, Zoltan
    Marton, Peter
    Horvolgyi, Zoltan
    Szilagyi, Imre Miklos
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 328
  • [35] Preparation and properties of porous TiO2/HA/TiO2 composite coating
    Zhang, Jingxian
    Hong, Qiuhong
    Sun, Xuetong
    Zhang, Xinping
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2012, 26 (06): : 572 - 576
  • [36] Assessment of silica aerogel/nano-TiO2(AG/TiO2) composite material and its application in photocatalytic coating
    Liu, Lele
    Zhao, Piqi
    Wang, Shoude
    Xie, Ning
    Wang, Han
    Strokova, Valeria
    Lu, Lingchao
    Cheng, Xin
    COMPOSITE INTERFACES, 2021, 28 (05) : 493 - 509
  • [37] Method to Control the Phase of TiO2 in Porous Carbon–TiO2 Composite
    Yu Xiang Chen
    Bin Hui Luo
    Bin Yuan Zhao
    Yi Jian Lai
    Hao Zhe Wang
    Meng Yao Gao
    Wei Xun Zhang
    Ke Bin Chen
    Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22 : 90 - 96
  • [38] Optical Properties of ZnO, TiO2 and ZnO:TiO2 Composite Films
    Rashid, Affa Rozana Abdul
    Tazri, Hani Khaliesah
    NANO HYBRIDS AND COMPOSITES, 2021, 31 : 25 - 33
  • [39] Orthogonal experimentation for optimization of TiO2 nanoparticles hydrothermal synthesis and photocatalytic property of a TiO2/concrete composite
    Luo, Jianlin
    Zhu, Guixian
    Zhang, Fangfang
    Li, Qiuyi
    Zhao, Tiejun
    Zhu, Xueqing
    RSC ADVANCES, 2015, 5 (08) : 6071 - 6078
  • [40] Synaptic plasticity of TiO2 nanowire transistor
    Qi, Hongxia
    Wu, Ying
    MICROELECTRONICS INTERNATIONAL, 2020, 37 (03) : 125 - 130