Improving the Analysis of Hyperspectral Images Using Tensor Decomposition

被引:0
|
作者
Bilius, Laura-Bianca [1 ,2 ]
Pentiuc, Stefan Gheorghe [1 ,2 ]
机构
[1] Stefan Cel Mare Univ Suceava, Fac Elect Engn & Comp Sci, Suceava, Romania
[2] Stefan Cel Mare Univ Suceava, MintViz Lab, MANSiD Res Ctr, Suceava, Romania
关键词
Tensorial decomposition; Parafac; segmentation; hyperspectral images;
D O I
10.1109/das49615.2020.9108935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the development of remote sensing hyperspectral image analysis techniques become more important. Known methods and algorithms for pattern recognition and clustering together with others built especially for this type of data are trying to be used for dimensional reduction, spectral unmixing, decomposition, segmentation. In this paper, we approached Parafac decomposition due to the lower computation time for obtaining a model that explains very well the real data. Image segmentation techniques are applied to the abundances map to distinguish materials in an area of interest. These techniques are used to obtain a representation that will facilitate the interpretation of the information contained in the hyperspectral image.
引用
收藏
页码:173 / 176
页数:4
相关论文
共 50 条
  • [1] Spatio-Spectral Compression and Analysis of Hyperspectral Images using Tensor Decomposition
    Renu, R. K.
    Sowmya, V
    Soman, K. P.
    [J]. 2018 TWENTY FOURTH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2018,
  • [2] Target Detection for Polarized Hyperspectral Images Based on Tensor Decomposition
    Tan, Jian
    Zhang, Junping
    Zhang, Ye
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 674 - 678
  • [3] Classification of hyperspectral images by tensor modeling and additive morphological decomposition
    Velasco-Forero, Santiago
    Angulo, Jesus
    [J]. PATTERN RECOGNITION, 2013, 46 (02) : 566 - 577
  • [4] Parameters selection of morphological scale-space decomposition for hyperspectral images using tensor modeling
    Velasco-Forero, Santiago
    Angulo, Jesus
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [5] Target Representation in Hyperspectral Images Based on Tensor Block Term Decomposition
    Zhang, Xing
    Wen, Gongjian
    Dai, Wei
    [J]. 2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 793 - 798
  • [6] HYPERSPECTRAL IMAGE CLASSIFICATION USING TENSOR CP DECOMPOSITION
    Jouni, Mohamad
    Dalla Mura, Mauro
    Comon, Pierre
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1164 - 1167
  • [7] Decomposition of Interference Hyperspectral Images Using Improved Morphological Component Analysis
    Wen Jia
    Zhao Jun-suo
    Wang Cai-ling
    Xia Yu-li
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36 (01) : 254 - 258
  • [8] FUSION OF HYPERSPECTRAL AND PANCHROMATIC IMAGES USING STRUCTURE TENSOR
    Qu, Jiahui
    Li, Yunsong
    Dong, Wenqian
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7216 - 7219
  • [9] CHANGE DETECTION FOR HYPERSPECTRAL IMAGES BASED ON TENSOR ANALYSIS
    Chen, Zhao
    Wang, Bin
    Niu, Yubin
    Xia, Wei
    Zhang, Jian Qiu
    Hu, Bo
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1662 - 1665
  • [10] Compression and noise reduction of hyperspectral images using non-negative tensor decomposition and compressed sensing
    Hassanzadeh, Shirin
    Karami, Azam
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2016, 49 : 587 - 598