Exact solutions of holonomic quantum computation

被引:11
|
作者
Tanimura, S [1 ]
Hayashi, D
Nakahara, M
机构
[1] Osaka City Univ, Grad Sch Engn, Osaka 5588585, Japan
[2] Kyoto Univ, Dept Engn Phys & Mech, Kyoto 6068501, Japan
[3] Kinki Univ, Dept Phys, Higashiosaka, Osaka 5778502, Japan
基金
日本学术振兴会;
关键词
quantum computer; unitary gate; holonomy; isoholonomic problem; small circle; control theory;
D O I
10.1016/j.physleta.2004.03.057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Holonomic quantum computation is analyzed from geometrical viewpoint. We develop an optimization scheme in which an arbitrary unitary gate is implemented with a small circle in a complex projective space. Exact solutions for the Hadamard, CNOT and 2-qubit discrete Fourier transformation gates are explicitly constructed. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [21] Experimental Realization of Nonadiabatic Holonomic Quantum Computation
    Feng, Guanru
    Xu, Guofu
    Long, Guilu
    PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [22] Non-adiabatic holonomic quantum computation
    Sjoqvist, Erik
    Tong, D. M.
    Andersson, L. Mauritz
    Hessmo, Bjoern
    Johansson, Markus
    Singh, Kuldip
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [23] Nonadiabatic holonomic quantum computation with Rydberg superatoms
    Zhao, P. Z.
    Wu, X.
    Xing, T. H.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [24] Superadiabatic holonomic quantum computation in cavity QED
    Liu, Bao-Jie
    Huang, Zhen-Hua
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [25] Nonadiabatic holonomic quantum computation based on a commutation relation
    Zhao, P. Z.
    Tong, D. M.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [26] Universal quantum computation by holonomic and nonlocal gates with imperfections
    Ellinas, D. (ellinas@science.tuc.gr), 2001, American Institute of Physics Inc. (64):
  • [27] Nonadiabatic holonomic quantum computation and its optimal control
    Yan LIANG
    Pu SHEN
    Tao CHEN
    Zheng-Yuan XUE
    ScienceChina(InformationSciences), 2023, 66 (08) : 23 - 44
  • [28] Nonadiabatic Holonomic Quantum Computation via Path Optimization
    Ji, Li-Na
    Liang, Yan
    Shen, Pu
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [29] Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries
    Chen, Tao
    Zhang, Jiang
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [30] Refocusing schemes for holonomic quantum computation in the presence of dissipation
    Cen, LX
    Zanardi, P
    PHYSICAL REVIEW A, 2004, 70 (05): : 052323 - 1