Exponential Strand-Displacement Amplification for Detection of MicroRNAs

被引:156
|
作者
Shi, Chao [1 ,2 ]
Liu, Qi [1 ]
Ma, Cuiping [1 ]
Zhong, Wenwan [2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Shandong, Peoples R China
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
LONG NONCODING RNA; ULTRASENSITIVE DETECTION; CIRCULATING MICRORNAS; SENSITIVE DETECTION; DNA AMPLIFICATION; CANCER;
D O I
10.1021/ac4038043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
MicroRNAs (miRNAs) are promising targets for disease diagnosis. However, miRNA detection requires rapid, sensitive, and selective detection to be effective as a diagnostic tool. Herein, a miRNA-initiated exponential strand-displacement amplification (SDA) assay was reported. With the Klenow fragment, nicking enzyme Nt.AlwI, and two primers, the miRNA target can trigger two cycles of nicking, polymerization, and displacement reactions. These reaction cycles amplified the target miRNA exponentially and generated dsDNAs detectable with SYBR Green I in real-time PCR As low as 16 zmol of the target miRNA was. detected by this one-pot assay within 90 min, and the dynamic range spanned over 9 orders of magnitude. Negligible impact from the complex biological matrix was observed on the amplification reaction, indicating the assay's capability to directly detect miRNAs in biofluids.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [21] Quantification of multiple microRNAs by microchip electrophoresis assisted by strand displacement amplification
    Xie, Qihui
    Chen, Jingyi
    Zhang, Jingzi
    Chu, Zhaohui
    Zhang, Fan
    Wang, Qingjiang
    JOURNAL OF CHROMATOGRAPHY A, 2024, 1730
  • [22] Exponential Amplification for Chemiluminescence Resonance Energy Transfer Detection of MicroRNA in Real Samples Based on a Cross-Catalyst Strand-Displacement Network (vol 83, pg 3696, 2011)
    Bi, Sai
    Zhang, Jilei
    Hao, Shuangyuan
    Ding, Caifeng
    Zhang, Shusheng
    ANALYTICAL CHEMISTRY, 2011, 83 (11) : 4326 - 4326
  • [23] A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification
    Yang, Ke
    Li, Jining
    de la Chapelle, Marc Lamy
    Huang, Guorong
    Wang, Yunxia
    Zhang, Jinbao
    Xu, Degang
    Yao, Jianquan
    Yang, Xiang
    Fu, Weiling
    BIOSENSORS & BIOELECTRONICS, 2021, 175
  • [24] Palindromic molecular beacon-based intramolecular strand-displacement amplification strategy for ultrasensitive detection of K-ras gene
    Li, Hongbo
    Tang, Yongqiong
    Zhao, Weihua
    Wu, Zaisheng
    Wang, Suqin
    Yu, Ruqin
    ANALYTICA CHIMICA ACTA, 2019, 1065 : 98 - 106
  • [25] Strand-displacement DNA polymerase induced isothermal circular amplification fluorescence sensor for identification of pork component
    Li, Jing
    Feng, Yong-Wei
    Huang, Li-Jun
    Jiang, Rui
    Shen, Xiao-Fang
    FOOD BIOSCIENCE, 2021, 42
  • [26] Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer
    Huang, Jin
    Chen, Yan
    Yang, Liu
    Zhu, Zhi
    Zhu, Guizhi
    Yang, Xiaohai
    Wang, Kemin
    Tan, Weihong
    BIOSENSORS & BIOELECTRONICS, 2011, 28 (01): : 450 - 453
  • [27] Detection of Mycobacterium tuberculosis by thermophilic strand displacement amplification
    Fraiser, W
    Nycz, C
    Spargo, C
    Spears, P
    VanCleve, M
    Walker, T
    Wright, D
    BIOLOGICALS, 1996, 24 (03) : 220 - 220
  • [28] DNA Strand-Displacement Digital Logic Circuit with Fluorescence Resonance Energy Transfer Detection
    Cui, Guangzhao
    Zhang, Junya
    Cui, Yuhan
    Zhao, Taotao
    Wang, Yanfeng
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (09) : 2095 - 2100
  • [29] Dynamic DNA nanotechnology using strand-displacement reactions
    Zhang, David Yu
    Seelig, Georg
    NATURE CHEMISTRY, 2011, 3 (02) : 103 - 113
  • [30] Dynamic DNA nanotechnology using strand-displacement reactions
    Zhang D.Y.
    Seelig G.
    Nature Chemistry, 2011, 3 (2) : 103 - 113