Exponential Strand-Displacement Amplification for Detection of MicroRNAs

被引:156
|
作者
Shi, Chao [1 ,2 ]
Liu, Qi [1 ]
Ma, Cuiping [1 ]
Zhong, Wenwan [2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, Qingdao 266042, Shandong, Peoples R China
[2] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
LONG NONCODING RNA; ULTRASENSITIVE DETECTION; CIRCULATING MICRORNAS; SENSITIVE DETECTION; DNA AMPLIFICATION; CANCER;
D O I
10.1021/ac4038043
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
MicroRNAs (miRNAs) are promising targets for disease diagnosis. However, miRNA detection requires rapid, sensitive, and selective detection to be effective as a diagnostic tool. Herein, a miRNA-initiated exponential strand-displacement amplification (SDA) assay was reported. With the Klenow fragment, nicking enzyme Nt.AlwI, and two primers, the miRNA target can trigger two cycles of nicking, polymerization, and displacement reactions. These reaction cycles amplified the target miRNA exponentially and generated dsDNAs detectable with SYBR Green I in real-time PCR As low as 16 zmol of the target miRNA was. detected by this one-pot assay within 90 min, and the dynamic range spanned over 9 orders of magnitude. Negligible impact from the complex biological matrix was observed on the amplification reaction, indicating the assay's capability to directly detect miRNAs in biofluids.
引用
收藏
页码:336 / 339
页数:4
相关论文
共 50 条
  • [1] Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection
    Zou, Bingjie
    Song, Qinxin
    Wang, Jianping
    Liu, Yunlong
    Zhou, Guohua
    CHEMICAL COMMUNICATIONS, 2014, 50 (89) : 13722 - 13724
  • [2] Reverse strand-displacement amplification strategy for rapid detection of p53 gene
    Wang, Lisha
    Han, Ying
    Xiao, Shuai
    Lv, Sha
    Wang, Cong
    Zhang, Nan
    Wang, Zhengyong
    Tang, Yongqiong
    Li, Hongbo
    Lyu, Jianxin
    Xu, Huo
    Shen, Zhifa
    TALANTA, 2018, 187 : 365 - 369
  • [3] Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction
    Shi, Chao
    Ge, Yujie
    Gu, Hongxi
    Ma, Cuiping
    BIOSENSORS & BIOELECTRONICS, 2011, 26 (12): : 4697 - 4701
  • [4] Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification
    Meng, Xiangdan
    Dai, Wenhao
    Zhang, Kai
    Dong, Haifeng
    Zhang, Xueji
    CHEMICAL SCIENCE, 2018, 9 (05) : 1184 - 1190
  • [5] Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate
    Song, Weiling
    Zhang, Qiao
    Xie, Xuxu
    Zhang, Shusheng
    BIOSENSORS & BIOELECTRONICS, 2014, 61 : 51 - 56
  • [6] Linear nicking endonuclease-mediated strand-displacement DNA amplification
    Joneja, Aric
    Huang, Xiaohua
    ANALYTICAL BIOCHEMISTRY, 2011, 414 (01) : 58 - 69
  • [7] Sensitive SERS detection of DNA and lysozyme based on polymerase assisted cross strand-displacement amplification
    Li, Ying
    Lei, Chengcun
    Zeng, Yan
    Ji, Xiaoting
    Zhang, Shusheng
    CHEMICAL COMMUNICATIONS, 2012, 48 (88) : 10892 - 10894
  • [8] DNA strand-displacement buffers
    Scalise, Dominic
    Schulman, Rebecca
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [9] Isothermal strand-displacement amplification applications for high-throughput genomics
    Detter, JC
    Jett, JM
    Lucas, SM
    Dalin, E
    Arellano, AR
    Wang, M
    Nelson, JR
    Chapman, J
    Lou, YI
    Rokhsar, D
    Hawkins, TL
    Richardson, PM
    GENOMICS, 2002, 80 (06) : 691 - 698
  • [10] Attomolar Detection of Proteins via Cascade Strand-Displacement Amplification and Polystyrene Nanoparticle Enhancement in Fluorescence Polarization Aptasensors
    Huang, Yong
    Liu, Xiaoqian
    Huang, Huakui
    Qin, Jian
    Zhang, Liangliang
    Zhao, Shulin
    Chen, Zhen-Feng
    Liang, Hong
    ANALYTICAL CHEMISTRY, 2015, 87 (16) : 8107 - 8114