Hydrogen-related Fatigue Fracture under Various Test Frequencies in Low-carbon Martensitic Steel

被引:4
|
作者
Matsumiya, Hisashi [1 ]
Shibata, Akinobu [2 ,3 ]
Maegawa, Yoshiaki [1 ]
Okada, Kazuho [1 ,2 ]
Tsuji, Nobuhiro [1 ,3 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto 6068501, Japan
[2] Natl Inst Mat Sci NIMS, Res Ctr Struct Mat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[3] Kyoto Univ, Elements Strategy Initiat Struct Mat ESISM, Sakyo Ku, Kyoto 6068501, Japan
关键词
hydrogen embrittlement; fatigue fracture; test frequency; martensitic steel; electron backscattering diffraction; crystallographic orientation analysis; CRACK-GROWTH; LATH MARTENSITE; GASEOUS-HYDROGEN; PIPELINE STEELS; MORPHOLOGY; CRYSTALLOGRAPHY; DEFORMATION;
D O I
10.2355/isijinternational.ISIJINT-2022-210
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present study investigated the hydrogen-related fatigue fracture under various test frequencies in low-carbon martensitic steel. In the hydrogen-charged specimen, although the number of cycles to failure decreased with decreasing test frequency, the time to failure was almost the same regardless of the test frequency. Observation of fracture surface revealed that the transgranular surface was a main component in the uncharged specimen, while the intergranular surface was often observed especially at the lower test frequency in the hydrogen-charged specimen. In addition, for the transgranular fracture, cracks often propagated across the laths regardless of test conditions. The high-strained region was observed over a relatively wide area in the uncharged specimen. On the other hand, the hydrogen-related fatigue-crack propagation was accompanied by intense localized plastic deformation, which could accelerate crack growth. The intergranular cracking and high localization of plastic deformation could be the possible reasons for decreasing the fatigue life by the presence of hydrogen.
引用
收藏
页码:2089 / 2094
页数:6
相关论文
共 50 条
  • [41] Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel
    Yang, G.
    Xia, S. L.
    Zhang, F. C.
    Branco, R.
    Long, X. Y.
    Li, Y. G.
    Li, J. H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 826
  • [42] FRACTURE TOUGHNESS OF LOW-CARBON STEEL PLATES
    不详
    METAL SCIENCE AND HEAT TREATMENT, 1976, 18 (7-8) : 655 - 656
  • [43] Origin of Serrated Markings on the Hydrogen Related Quasi-cleavage Fracture in Low-carbon Steel with Ferrite Microstructure
    Okada, Kazuho
    Shibata, Akinobu
    Matsumiya, Hisashi
    Tsuji, Nobuhiro
    ISIJ INTERNATIONAL, 2022, 62 (10) : 2081 - 2088
  • [44] Hydrogen embrittlement behaviors at different deformation temperatures in as-quenched low-carbon martensitic steel
    Momotani, Yuji
    Shibata, Akinobu
    Tsuji, Nobuhiro
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (05) : 3131 - 3140
  • [45] Origin of Serrated Markings on the Hydrogen Related Quasi-cleavage Fracture in Low-carbon Steel with Ferrite Microstructure
    Okada, Kazuho
    Shibata, Akinobu
    Matsumiya, Hisashi
    Tsuji, Nobuhiro
    Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 110 (11): : 890 - 898
  • [46] Relationship between mechanical response and microscopic crack propagation behavior of hydrogen-related intergranular fracture in as-quenched martensitic steel
    Shibata, Akinobu
    Gutierrez-Urrutia, Ivan
    Okada, Kazuho
    Miyamoto, Goro
    Madi, Yazid
    Besson, Jacques
    Tsuzaki, Kaneaki
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 831
  • [47] LOW-CARBON MARTENSITIC CHROMIUM-NICKEL-MOLYBDENUM STEEL
    MELNIKOV, NP
    GLADSHTEYN, LI
    GORITSKIY, VM
    ENTIN, RI
    KOGAN, LI
    KLEYNER, LM
    SHNEYDEROV, GR
    BOGDANOV, VI
    RUSSIAN METALLURGY, 1983, (02): : 94 - 100
  • [48] PRELIMINARY ASSESSMENT OF PROPERTIES OF MARTENSITIC LOW-CARBON STEEL SHEET
    ALBUTT, KJ
    GARBER, S
    JOURNAL OF THE IRON AND STEEL INSTITUTE, 1966, 204 : 278 - &
  • [49] Quenching and partitioning treatment of a low-carbon martensitic stainless steel
    Tsuchiyama, Toshihiro
    Tobata, Junya
    Tao, Teruyuki
    Nakada, Nobuo
    Takaki, Setsuo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 532 : 585 - 592
  • [50] Crystallographic characterization of cleavage plane in low-carbon martensitic steel
    Tsuboi, M.
    Shibata, A.
    Terada, D.
    Tsuji, N.
    MATERIALS TODAY-PROCEEDINGS, 2015, 2 : 655 - 658