Elucidating Deviating Temperature Behavior of Organic Light-Emitting Diodes and Light-Emitting Electrochemical Cells

被引:16
|
作者
Rafols-Ribe, Joan [1 ]
Gracia-Espino, Eduardo [1 ]
Jenatsch, Sandra [3 ]
Lundberg, Petter [1 ]
Sandstrom, Andreas [1 ,2 ]
Tang, Shi [1 ,2 ]
Larsen, Christian [1 ,2 ]
Edman, Ludvig [1 ,2 ]
机构
[1] Umea Univ, Organ Photon & Elect Grp, SE-90187 Umea, Sweden
[2] Umea Univ, LunaLEC AB, SE-90187 Umea, Sweden
[3] Fluxim AG, Katharina Sulzer Pl 2, CH-8400 Winterthur, Switzerland
基金
瑞典研究理事会;
关键词
doping effects; emission zone position; light‐ emitting electrochemical cells; optical simulation; organic light‐ emitting diodes; Super Yellow; temperature dependence; CONJUGATED POLYMER; DEVICES; OPERATION; WHITE; FABRICATION; STABILITY; EVOLUTION; LIFETIME; ZONE;
D O I
10.1002/adom.202001405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Organic light-emitting diodes (OLEDs) and light-emitting electrochemical cells (LECs) exhibit different operational modes that render them attractive for complementary applications, but their dependency on the device temperature has not been systematically compared. Here, the effects of a carefully controlled device temperature on the performance of OLEDs and LECs based on two common emissive organic semiconductors are investigated. It is found that the peak luminance and current efficacy of the two OLEDs are relatively temperature independent, whereas, the corresponding LECs exhibit a significant increase by approximate to 85% when the temperature is changed from 20 to 80 degrees C. A combination of simulations and measurements reveal that this deviating behavior is consistent with a shift of the emission zone from closer to the transparent anode toward the center of the active material for both the OLEDs and the LECs, which in turn can be induced by a stronger positive temperature dependence of the mobility of the holes than the electrons.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Light manipulation for organic light-emitting diodes
    Ou, Qing-Dong
    Zhou, Lei
    Li, Yan-Qing
    Tang, Jian-Xin
    OPTOELECTRONIC DEVICES AND INTEGRATION V, 2014, 9270
  • [12] A Review of Light-Emitting Diodes and Ultraviolet Light-Emitting Diodes and Their Applications
    Bhattarai, Trailokya
    Ebong, Abasifreke
    Raja, Mohammad Yasin Akhtar
    PHOTONICS, 2024, 11 (06)
  • [13] Dendrimers for organic light-emitting diodes
    Li, Jiuyan
    Liu, Di
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (41) : 7584 - 7591
  • [14] Degradation in organic light-emitting diodes
    Nguyen, TP
    Jolinat, P
    Destruel, P
    Clergereaux, R
    Farenc, J
    THIN SOLID FILMS, 1998, 325 (1-2) : 175 - 180
  • [15] Photoprogrammable Organic Light-Emitting Diodes
    Zacharias, Philipp
    Gather, Malte C.
    Koehnen, Anne
    Rehmann, Nina
    Meerholz, Klaus
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (22) : 4038 - 4041
  • [16] Tandem Organic Light-Emitting Diodes
    Fung, Man-Keung
    Li, Yan-Qing
    Liao, Liang-Sheng
    ADVANCED MATERIALS, 2016, 28 (47) : 10381 - 10408
  • [17] Magnetoelectroluminescence in organic light-emitting diodes
    Lawrence, Joseph E.
    Lewis, Alan M.
    Manolopoulos, David E.
    Hore, P. J.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (21):
  • [18] Models of organic light-emitting diodes
    Bassler, H
    Tak, YH
    Khramtchenkov, DV
    Nikitenko, VR
    SYNTHETIC METALS, 1997, 91 (1-3) : 173 - 179
  • [19] Nanoscale organic light-emitting diodes
    Yamamoto, H
    Wilkinson, J
    Long, JP
    Bussman, K
    Christodoulides, JA
    Kafafi, ZH
    NANO LETTERS, 2005, 5 (12) : 2485 - 2488
  • [20] Temperature Dependence of Degradation in Organic Light-Emitting Diodes
    Kondakova, Marina E.
    Young, Ralph H.
    Jarikov, Viktor V.
    Giesen, David J.
    2009 SID INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPERS, VOL XL, BOOKS I - III, 2009, : 1677 - 1680