Approximation of the DNLS equation by the cubic nonlinear Schrodinger equation

被引:0
|
作者
Oliveira, F [1 ]
机构
[1] Univ Minho, Ctr Matemat, P-4710057 Braga, Portugal
关键词
D O I
10.1017/S030821050000336X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We rigorously approach the Schrodinger equation of derivative type q(t) + iq(xx) + lambda\q\(2) q(x) + muq(2)(q) over bar (x) = 0, lambda epsilon R, mu epsilon C, by the cubic nonlinear Schrodinger equation A(T) + iA(XX) + ik(0) (lambda - mu)\A\(2) A = 0. We also study the case of the KdV-Iike equation q(t) + iq(xx) + aq(xxx) + i\q\(2)q + lambda(\q\(2)q) + (μ) over tilde \q\(2)q(x) = 0, (λ) over bar, (μ) over bar epsilon R, arising in optical physics.
引用
收藏
页码:595 / 607
页数:13
相关论文
共 50 条
  • [42] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [43] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    [J]. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [44] Existence and approximation of some radial solutions of a nonlinear Schrodinger equation
    Vrdoljak, B
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 703 - 704
  • [45] Numerical approximation of singular solutions of the damped Nonlinear Schrodinger equation
    Akrivis, GD
    Dougalis, VA
    Karakashian, OA
    McKinney, WR
    [J]. ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 117 - 124
  • [46] Nonlinear Schrodinger Approximation for the Electron Euler-Poisson Equation
    Liu, Huimin
    Pu, Xueke
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (03) : 361 - 378
  • [47] A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRODINGER EQUATION
    Shi, Dongyang
    Liao, Xin
    Wang, Lele
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (03) : 584 - 592
  • [48] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    [J]. NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [49] A FOURIER INTEGRATOR FOR THE CUBIC NONLINEAR SCHRODINGER EQUATION WITH ROUGH INITIAL DATA
    Knoeller, Marvin
    Ostermann, Alexander
    Schratz, Katharina
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1967 - 1986
  • [50] A new finite difference scheme for a dissipative cubic nonlinear Schrodinger equation
    Zhang Rong-Pei
    Yu Xi-Jun
    Zhao Guo-Zhong
    [J]. CHINESE PHYSICS B, 2011, 20 (03)