Atmospheric boundary layer over steep surface waves

被引:11
|
作者
Troitskaya, Yuliya [1 ,2 ]
Sergeev, Daniil A. [1 ,2 ]
Druzhinin, Oleg [1 ,2 ]
Kandaurov, Alexander A. [1 ,2 ]
Ermakova, Olga S. [1 ,2 ]
Ezhova, Ekaterina V. [1 ,2 ]
Esau, Igor [3 ]
Zilitinkevich, Sergej [2 ,3 ,4 ,5 ]
机构
[1] Inst Appl Phys, Nizhnii Novgorod, Russia
[2] Lobachevsky Nizhny Novgorod State Univ, Nizhnii Novgorod, Russia
[3] Nansen Environm & Remote Sensing Ctr, Bergen, Norway
[4] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[5] Univ Helsinki, Div Atmospher Sci & Geophys, Helsinki, Finland
基金
俄罗斯科学基金会;
关键词
Air-sea interaction; Quasi-linear wave model; Laboratory experiments with waves at strong winds; AIR-FLOW SEPARATION; PROGRESSIVE WATER-WAVE; TURBULENT-FLOW; WIND; MODEL; DRAG; COEFFICIENTS; SIMULATION; GENERATION; EXCHANGE;
D O I
10.1007/s10236-014-0743-4
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.
引用
收藏
页码:1153 / 1161
页数:9
相关论文
共 50 条
  • [31] OBSERVATIONS OF ATMOSPHERIC WAVES IN PLANETARY BOUNDARY-LAYER
    HOOKE, WH
    BERAN, DW
    YOUNG, JM
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1972, 51 (01): : 147 - &
  • [32] Observations of Atmospheric Solitary Waves in the Urban Boundary Layer
    M. P. Rao
    Paolo Castracane
    Stefano Casadio
    Daniele Fuá
    Giorgio Fiocco
    [J]. Boundary-Layer Meteorology, 2004, 111 : 85 - 108
  • [33] Visualization of streaks, thermals and waves in the atmospheric boundary layer
    Fujiyoshi, Y.
    Yamashita, K.
    Fujiwara, C.
    [J]. JOURNAL OF VISUALIZATION, 2006, 9 (04) : 359 - 359
  • [34] Observations of solitary waves in the stable atmospheric boundary layer
    Rees, JM
    Anderson, PS
    King, JC
    [J]. BOUNDARY-LAYER METEOROLOGY, 1998, 86 (01) : 47 - 61
  • [35] TURBULENT BOUNDARY LAYER OVER WATER WAVES
    LEE, FA
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1971, 52 (09) : 937 - &
  • [36] A calculation of parameters of the surface atmospheric layer with a numerical model of the planetary boundary layer of the atmosphere and the spectrum of wind waves
    Glazunov, V
    Zaslavskii, MM
    [J]. IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1997, 33 (02): : 163 - 170
  • [37] Flux measurements in the surface marine Atmospheric Boundary Layer over the Aegean Sea, Greece
    Kostopoulos, V. E.
    Helmis, C. G.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 494 : 166 - 176
  • [38] Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer
    Zhang, Wei
    Kang, Jong-Hoon
    Lee, Sang-Joon
    [J]. GEOMORPHOLOGY, 2007, 86 (3-4) : 320 - 331
  • [39] EXPERIMENTAL STUDY OF THE SURFACE MARINE ATMOSPHERIC BOUNDARY LAYER OVER AEGEAN SEA, GREECE
    Kostopoulos, V. E.
    Helmis, C. G.
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2013,
  • [40] The Modeling of the Atmospheric Boundary Layer over Inhomogeneously Moistened Surface as a Tool for vapotranspiration Estimation
    Nadezhina, E. D.
    Shkol'nik, I. M.
    Sternzat, A., V
    Pikaleva, A. A.
    Egorov, B. N.
    [J]. RUSSIAN METEOROLOGY AND HYDROLOGY, 2020, 45 (12) : 835 - 843