Generalized Bezier curves and surfaces based on Lupas q-analogue of Bernstein operator

被引:40
|
作者
Han, Li-Wen [1 ,2 ]
Chu, Ying [1 ]
Qiu, Zhi-Yu [1 ]
机构
[1] Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Prov Key Lab Computat Math & Applicat, Shijiazhuang 050024, Hebei, Peoples R China
关键词
Lupas q-analogue of Bernstein operator; Lupas q-Bezier curve; Lupas q-Bezier surface; Degree elevation; de Casteljau algorithm; Shape parameter;
D O I
10.1016/j.cam.2013.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new generalization of Bezier curves with one shape parameter is constructed. It is based on the Lupas q-analogue of Bernstein operator, which is the first generalized Bernstein operator based on the q-calculus. The new curves have some properties similar to classical Bezier curves. Moreover, we establish degree evaluation and de Casteljau algorithms for the generalization. Furthermore, we construct the corresponding tensor product surfaces over the rectangular domain, and study the properties of the surfaces, as well as the degree evaluation and de Casteljau algorithms. Compared with q-Bezier curves and surfaces based on Phillips q-Bernstein polynomials, our generalizations show more flexibility in choosing the value of q and superiority in shape control of curves and surfaces. The shape parameters provide more convenience for the curve and surface modeling. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 50 条
  • [21] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [22] Applications of the generalized kober type fractional q-integral operator contain the q-analogue of M-function to the q-analogue of H-function
    Shimelis, Biniyam
    Suthar, D. L.
    RESEARCH IN MATHEMATICS, 2024, 11 (01):
  • [23] A subdivision algorithm for generalized Bernstein-Bezier curves
    Jena, MK
    Shunmugaraj, P
    Das, PC
    COMPUTER AIDED GEOMETRIC DESIGN, 2001, 18 (07) : 673 - 698
  • [24] A p, q-Analogue of the Generalized Derangement Numbers
    Briggs, Karen S.
    Remmel, Jeffrey B.
    ANNALS OF COMBINATORICS, 2009, 13 (01) : 1 - 25
  • [25] A p, q-ANALOGUE OF THE GENERALIZED STIRLING NUMBERS
    Corcino, Roberto B.
    Montero, Charles B.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 15 (02): : 137 - 155
  • [26] A q-analogue of generalized Eulerian polynomials with applications
    Pan, Qiongqiong
    Zeng, Jiang
    ADVANCES IN APPLIED MATHEMATICS, 2019, 104 : 85 - 99
  • [27] A p, q-Analogue of the Generalized Derangement Numbers
    Karen S. Briggs
    Jeffrey B. Remmel
    Annals of Combinatorics, 2009, 13 : 1 - 25
  • [28] On the Approximation Properties of q-Analogue Bivariate λ-Bernstein Type Operators
    Aliaga, Edmond
    Baxhaku, Behar
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [29] A q-analogue of the type A Dunkl operator and integral kernel
    Baker, TH
    Forrester, PJ
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (14) : 667 - 686
  • [30] q-Analogue of a Kantorovitch Variant of an Operator Defined by Stancu
    Agrawal, P. N.
    Kajla, Arun
    Kumar, Abhishek
    ACTA MATHEMATICA VIETNAMICA, 2022, 47 (04) : 781 - 816