A MATHEMATICAL MODEL OF TRANSMISSION OF PLASMODIUM VIVAX MALARIA WITH A CONSTANT TIME DELAY FROM INFECTION TO INFECTIOUS

被引:1
|
作者
Kammanee, Athassawat [1 ,2 ]
Tansuiy, Orawan [3 ]
机构
[1] Prince Songkla Univ, Fac Sci, Dept Math & Stat, Appl Anal Res Unit, Hat Yai 90110, Songkhla, Thailand
[2] CHE, Ctr Excellence Math, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
[3] Prince Songkla Univ, Fac Sci, Dept Math & Stat, Hat Yai 90110, Songkhla, Thailand
来源
关键词
Plasmodium vivax malaria; basic reproduction number; locally stable; Hope bifurcation; time delay; DISEASE;
D O I
10.4134/CKMS.c180166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research is focused on a continuous epidemic model of transmission of Plasmodium vivax malaria with a time delay. The model is represented as a system of ordinary differential equations with delay. There are two equilibria, which are the disease-free state and the endemic equilibrium, depending on the basic reproduction number, R-0, which is calculated and decreases with the time delay. Moreover, the disease-free equilibrium is locally asymptotically stable if R-0 < 1. If R-0 > 1, a unique endemic steady state exists and is locally stable. Furthermore, Hopf bifurcation is applied to determine the conditions for periodic solutions.
引用
收藏
页码:685 / 699
页数:15
相关论文
共 50 条
  • [1] A mathematical model for the transmission of Plasmodium vivax malaria
    Ishikawa, H
    Ishii, A
    Nagai, N
    Ohmae, H
    Harada, M
    Suguri, S
    Leafasia, J
    PARASITOLOGY INTERNATIONAL, 2003, 52 (01) : 81 - 93
  • [2] Transmission model for Plasmodium vivax malaria
    Pongsumpun, Puntani
    Tang, I-Ming
    MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN RESEARCH AND EDUCATION, 2007, : 276 - +
  • [3] A Multiscale Mathematical Model of Plasmodium Vivax Transmission
    Anwar, Md Nurul
    Hickson, Roslyn I.
    Mehra, Somya
    McCaw, James M.
    Flegg, Jennifer A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (08)
  • [4] A Multiscale Mathematical Model of Plasmodium Vivax Transmission
    Md Nurul Anwar
    Roslyn I. Hickson
    Somya Mehra
    James M. McCaw
    Jennifer A. Flegg
    Bulletin of Mathematical Biology, 2022, 84
  • [5] Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model
    Somya Mehra
    James M. McCaw
    Mark B. Flegg
    Peter G. Taylor
    Jennifer A. Flegg
    Bulletin of Mathematical Biology, 2021, 83
  • [6] Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model
    Mehra, Somya
    McCaw, James M.
    Flegg, Mark B.
    Taylor, Peter G.
    Flegg, Jennifer A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (01)
  • [7] Mathematical model for the transmission of two plasmodium malaria
    Pongsumpun, P.
    World Academy of Science, Engineering and Technology, 2011, 51 : 687 - 691
  • [8] Plasmodium Vivax Infection Impersonating Plasmodium Falciparum Malaria
    Kakaraparthi, Sweta
    Prabhu, Raghunath
    EURASIAN JOURNAL OF MEDICINE, 2014, 46 (01): : 50 - 52
  • [9] Effects of climate change on Plasmodium vivax malaria transmission dynamics: A mathematical modeling approach
    Kim, Jung Eun
    Choi, Yongin
    Lee, Chang Hyeong
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 616 - 630
  • [10] A MATHEMATICAL-MODEL FOR PLASMODIUM-VIVAX MALARIA TRANSMISSION - ESTIMATION OF THE IMPACT OF TRANSMISSION-BLOCKING IMMUNITY IN AN ENDEMIC AREA
    DEZOYSA, APK
    MENDIS, C
    GAMAGEMENDIS, AC
    WEERASINGHE, S
    HERATH, PRJ
    MENDIS, KN
    BULLETIN OF THE WORLD HEALTH ORGANIZATION, 1991, 69 (06) : 725 - 734