Mathematical model for the transmission of two plasmodium malaria

被引:0
|
作者
Pongsumpun, P. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung road, Ladkrabang, Bangkok 10520, Thailand
关键词
Analytical results - Anopheles mosquitoes - Dynamical analysis - Malaria - Numerical results - Plasmodium falciparum - Plasmodium vivax - Threshold condition;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:687 / 691
相关论文
共 50 条
  • [1] A mathematical model for the transmission of Plasmodium vivax malaria
    Ishikawa, H
    Ishii, A
    Nagai, N
    Ohmae, H
    Harada, M
    Suguri, S
    Leafasia, J
    PARASITOLOGY INTERNATIONAL, 2003, 52 (01) : 81 - 93
  • [2] Transmission model for Plasmodium vivax malaria
    Pongsumpun, Puntani
    Tang, I-Ming
    MATHEMATICAL METHODS AND COMPUTATIONAL TECHNIQUES IN RESEARCH AND EDUCATION, 2007, : 276 - +
  • [3] A MATHEMATICAL MODEL OF TRANSMISSION OF PLASMODIUM VIVAX MALARIA WITH A CONSTANT TIME DELAY FROM INFECTION TO INFECTIOUS
    Kammanee, Athassawat
    Tansuiy, Orawan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 685 - 699
  • [4] Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model
    Somya Mehra
    James M. McCaw
    Mark B. Flegg
    Peter G. Taylor
    Jennifer A. Flegg
    Bulletin of Mathematical Biology, 2021, 83
  • [5] Antibody Dynamics for Plasmodium vivax Malaria: A Mathematical Model
    Mehra, Somya
    McCaw, James M.
    Flegg, Mark B.
    Taylor, Peter G.
    Flegg, Jennifer A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (01)
  • [6] A Multiscale Mathematical Model of Plasmodium Vivax Transmission
    Anwar, Md Nurul
    Hickson, Roslyn I.
    Mehra, Somya
    McCaw, James M.
    Flegg, Jennifer A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (08)
  • [7] A Multiscale Mathematical Model of Plasmodium Vivax Transmission
    Md Nurul Anwar
    Roslyn I. Hickson
    Somya Mehra
    James M. McCaw
    Jennifer A. Flegg
    Bulletin of Mathematical Biology, 2022, 84
  • [8] A mathematical model of malaria transmission in a periodic environment
    Bakary, Traore
    Boureima, Sangare
    Sado, Traore
    JOURNAL OF BIOLOGICAL DYNAMICS, 2018, 12 (01) : 400 - 432
  • [9] Bifurcation analysis of a mathematical model for malaria transmission
    Chitnis, Nakul
    Cushing, J. M.
    Hyman, J. M.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 67 (01) : 24 - 45
  • [10] Stability of a Mathematical Model of Malaria Transmission with Relapse
    Huo, Hai-Feng
    Qiu, Guang-Ming
    ABSTRACT AND APPLIED ANALYSIS, 2014,