Nonlinear regression models with increasing numbers of unknown parameters

被引:3
|
作者
Hajiyev, A. H. [1 ]
Hajiyev, V. G. [2 ]
机构
[1] Azerbaijan Acad Sci, Inst Cybernet, Baku 370141, Azerbaijan
[2] Baku State Univ, AZ-1148 Baku, Azerbaijan
关键词
Covariance Matrix; Unknown Parameter; Error Variance; Iterative Procedure; Iteration Step;
D O I
10.1134/S1064562409030107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approach for determining least squares estimators and covariance matrix elements is proposed to construct a confidence interval for the unknown function in nonlinear regression models with an increasing number of unknown parameters. The number of unknown parameters depend on the number of observations and a least square estimator is constructed by the iterative procedure. The minimum number of iteration steps are found, which is helpful in finding the asymptotic normality. A random variable is derived that is found to be the normal equation for the least squares estimator. The least squares estimators are used to construct an asymptotic confidence interval for the unknown function in nonlinear regression model.
引用
收藏
页码:339 / 341
页数:3
相关论文
共 50 条
  • [1] Nonlinear regression models with increasing numbers of unknown parameters
    A. H. Hajiyev
    V. G. Hajiyev
    Doklady Mathematics, 2009, 79 : 339 - 341
  • [2] Linear regression models with increasing numbers of unknown parameters
    Hajiyev, AH
    DOKLADY MATHEMATICS, 2004, 70 (03) : 887 - 891
  • [3] Linear regression models with increasing number of unknown parameters
    Gadzhiev, A.H.
    Doklady Akademii Nauk, 2004, 399 (03) : 298 - 302
  • [4] Construction of credible intervals for nonlinear regression models with unknown error distributions
    Yang, Ji-Yeon
    Yoon, Jungmo
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (04) : 813 - 848
  • [5] Fitting Very Flexible Models: Linear Regression With Large Numbers of Parameters
    Hogg, David W.
    Villar, Soledad
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2021, 133 (1027)
  • [6] Robust Estimation and Tests for Parameters of Some Nonlinear Regression Models
    Liu, Pengfei
    Zhang, Mengchen
    Zhang, Ru
    Zhou, Qin
    MATHEMATICS, 2021, 9 (06)
  • [7] OPTIMAL COHERENT EVALUATION OF REGRESSION PARAMETERS AND SCATTERING PARAMETERS IN NONLINEAR MODELS WITH ERRORS IN VARIABLES
    Malenko, A. L.
    Kukush, O. G.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 78 : 141 - 150
  • [8] Estimating the Parameters of Nonlinear Regression Models Through Particle Swarm Optimization
    Ozsoy, Volkan Soner
    Orkcu, H. Hasan
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (01): : 187 - 199
  • [9] Estimating Unknown Parameters and Disturbance Term in Uncertain Regression Models by the Principle of Least Squares
    Wang, Han
    Liu, Yang
    Shi, Haiyan
    SYMMETRY-BASEL, 2024, 16 (09):
  • [10] ESTIMATION OF PARAMETERS IN MODELS FOR TRAFFIC PREDICTION - NONLINEAR-REGRESSION APPROACH
    HOGBERG, P
    TRANSPORTATION RESEARCH, 1976, 10 (04): : 263 - 265