Protein-protein interaction prediction using a hybrid feature representation and a stacked generalization scheme

被引:43
|
作者
Chen, Kuan-Hsi [1 ]
Wang, Tsai-Feng [2 ]
Hu, Yuh-Jyh [3 ]
机构
[1] Natl Chiao Tung Univ, Coll Comp Sci, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Inst Data Sci & Engn, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Inst Biomed Engn, Coll Comp Sci, Hsinchu 300, Taiwan
关键词
Protein-protein interaction; Stacked generalization; Gene ontology; Network topology; SEMANTIC SIMILARITY MEASURES; GENE ONTOLOGY; SEQUENCES; SCALE; TOOL; RESIDUES; CELL;
D O I
10.1186/s12859-019-2907-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundAlthough various machine learning-based predictors have been developed for estimating protein-protein interactions, their performances vary with dataset and species, and are affected by two primary aspects: choice of learning algorithm, and the representation of protein pairs. To improve the performance of predicting protein-protein interactions, we exploit the synergy of multiple learning algorithms, and utilize the expressiveness of different protein-pair features.ResultsWe developed a stacked generalization scheme that integrates five learning algorithms. We also designed three types of protein-pair features based on the physicochemical properties of amino acids, gene ontology annotations, and interaction network topologies. When tested on 19 published datasets collected from eight species, the proposed approach achieved a significantly higher or comparable overall performance, compared with seven competitive predictors.ConclusionWe introduced an ensemble learning approach for PPI prediction that integrated multiple learning algorithms and different protein-pair representations. The extensive comparisons with other state-of-the-art prediction tools demonstrated the feasibility and superiority of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Prediction of Protein-Protein Interaction Types Using the Decision Templates
    Chen, Wei
    Zhang, Shao-Wu
    Cheng, Yong-Mei
    2009 FOURTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PROCEEDINGS, 2009, : 93 - 98
  • [32] Prediction of Protein-Protein Interaction using validated domain-domain interaction
    Das, Poulami
    Chatterjee, Piyali
    Basu, Subhadip
    Kundu, Mahantapas
    Nasipuri, Mita
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [33] Protein function prediction using neighbor relativity in protein-protein interaction network
    Moosavi, Sobhan
    Rahgozar, Masoud
    Rahimi, Amir
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2013, 43 : 11 - 16
  • [34] Protein Function Prediction Using Function Associations in Protein-Protein Interaction Network
    Sun, Pingping
    Tan, Xian
    Guo, Sijia
    Zhang, Jingbo
    Sun, Bojian
    Du, Ning
    Wang, Han
    Sun, Hui
    IEEE ACCESS, 2018, 6 : 30892 - 30902
  • [35] Protein-protein interface hot spots prediction based on a hybrid feature selection strategy
    Qiao, Yanhua
    Xiong, Yi
    Gao, Hongyun
    Zhu, Xiaolei
    Chen, Peng
    BMC BIOINFORMATICS, 2018, 19
  • [36] Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation
    Xianwen Ren
    Yong-Cui Wang
    Yong Wang
    Xiang-Sun Zhang
    Nai-Yang Deng
    BMC Bioinformatics, 12
  • [37] Protein-protein interface hot spots prediction based on a hybrid feature selection strategy
    Yanhua Qiao
    Yi Xiong
    Hongyun Gao
    Xiaolei Zhu
    Peng Chen
    BMC Bioinformatics, 19
  • [38] Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation
    Ren, Xianwen
    Wang, Yong-Cui
    Wang, Yong
    Zhang, Xiang-Sun
    Deng, Nai-Yang
    BMC BIOINFORMATICS, 2011, 12
  • [39] A New Feature Vector Based on Gene Ontology Terms for Protein-Protein Interaction Prediction
    Bandyopadhyay, Sanghamitra
    Mallick, Koushik
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (04) : 762 - 770
  • [40] Protein-Protein Interaction Prediction for Targeted Protein Degradation
    Orasch, Oliver
    Weber, Noah
    Mueller, Michael
    Amanzadi, Amir
    Gasbarri, Chiara
    Trummer, Christopher
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)