Design patterns for sparse-matrix computations on hybrid CPU/GPU platforms

被引:8
|
作者
Cardellini, Valeria [1 ]
Filippone, Salvatore [1 ]
Rouson, Damian W. I. [2 ]
机构
[1] Univ Roma Tor Vergata, Rome, Italy
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
Design patterns; sparse matrices; GPGPU computing; MODEL;
D O I
10.3233/SPR-130363
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We apply object-oriented software design patterns to develop code for scientific software involving sparse matrices. Design patterns arise when multiple independent developments produce similar designs which converge onto a generic solution. We demonstrate how to use design patterns to implement an interface for sparse matrix computations on NVIDIA GPUs starting from PSBLAS, an existing sparse matrix library, and from existing sets of GPU kernels for sparse matrices. We also compare the throughput of the PSBLAS sparse matrix-vector multiplication on two platforms exploiting the GPU with that obtained by a CPU-only PSBLAS implementation. Our experiments exhibit encouraging results regarding the comparison between CPU and GPU executions in double precision, obtaining a speedup of up to 35.35 on NVIDIA GTX 285 with respect to AMD Athlon 7750, and up to 10.15 on NVIDIA Tesla C2050 with respect to Intel Xeon X5650.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] Design Principles for Sparse Matrix Multiplication on the GPU
    Yang, Carl
    Buluc, Aydin
    Owens, John D.
    EURO-PAR 2018: PARALLEL PROCESSING, 2018, 11014 : 672 - 687
  • [22] High Performance Graph Analytics with Productivity on Hybrid CPU-GPU Platforms
    Yang, Haoduo
    Su, Huayou
    Lan, Qiang
    Wen, Mei
    Zhang, Chunyuan
    2018 2ND INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS (HP3C 2018), 2018, : 17 - 21
  • [23] Sparse Matrix Assembly on the GPU Through Multiplication Patterns
    Zayer, Rhaleb
    Steinberger, Markus
    Seidel, Hans-Peter
    2017 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2017,
  • [24] Extending lyapack for the solution of band Lyapunov equations on hybrid CPU–GPU platforms
    Peter Benner
    Alfredo Remón
    Ernesto Dufrechou
    Pablo Ezzatti
    Enrique S. Quintana-Ortí
    The Journal of Supercomputing, 2015, 71 : 740 - 750
  • [25] Efficient Computation of Galois Field Expressions on Hybrid CPU-GPU Platforms
    Radmanovic, Milos M.
    Gajic, Dusan B.
    Stankovic, Radomir S.
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2016, 26 (3-5) : 417 - 438
  • [26] Tuning Basic Linear Algebra Routines for Hybrid CPU plus GPU Platforms
    Bernabe, Gregorio
    Cuenca, Javier
    Garcia, Luis-Pedro
    Gimenez, Domingo
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2014, 29 : 30 - 39
  • [27] LINEAR COMBINATION OF LANCZOS VECTORS - A STORAGE-EFFICIENT ALGORITHM FOR SPARSE-MATRIX EIGENVECTOR COMPUTATIONS
    KOSLOWSKI, T
    VONNIESSEN, W
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (07) : 769 - 774
  • [28] A Hybrid CPU-GPU Multifrontal Optimizing Method in Sparse Cholesky Factorization
    Yong Chen
    Hai Jin
    Ran Zheng
    Yuandong Liu
    Wei Wang
    Journal of Signal Processing Systems, 2018, 90 : 53 - 67
  • [29] A Hybrid CPU-GPU Multifrontal Optimizing Method in Sparse Cholesky Factorization
    Chen, Yong
    Jin, Hai
    Zheng, Ran
    Liu, Yuandong
    Wang, Wei
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2018, 90 (01): : 53 - 67
  • [30] A Efficient Algorithm for Molecular Dynamics Simulation on Hybrid CPU-GPU Computing Platforms
    Li, Dapu
    Ai, Wei
    Ye, Yu
    Liang, Jie
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1357 - 1363