Galerkin-Petrov approach for the Boltzmann equation

被引:27
|
作者
Gamba, Irene M.
Rjasanow, Sergej
机构
关键词
Boltzmann equation; Spectral numerical method; Galerkin-Petrov approach; DISCRETE VELOCITY MODELS; FAST FOURIER-TRANSFORM; HARD-SPHERE MOLECULES; COLLISION OPERATOR; NUMERICAL-SOLUTION; DIFFERENCE SCHEME; SPECTRAL METHOD; KINETIC-MODELS; SHOCK-WAVES; APPROXIMATION;
D O I
10.1016/j.jcp.2018.04.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we propose a new Galerkin-Petrov method for the numerical solution of the classical spatially homogeneous Boltzmann equation. This method is based on an approximation of the distribution function by associated Laguerre polynomials and spherical harmonics and test in a variational manner with globally defined three-dimensional polynomials. A numerical realisation of the algorithm is presented. The algorithmic developments are illustrated with the help of several numerical tests. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 365
页数:25
相关论文
共 50 条
  • [21] Space-time streamline upwind Petrov-Galerkin methods for the Boltzmann transport equation
    Pain, C. C.
    Eaton, M. D.
    Smedley-Stevenson, R. P.
    Goddard, A. J. H.
    Piggott, M. D.
    de Oliveira, C. R. E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) : 4334 - 4357
  • [22] Computational analysis of the Covid-19 model using the continuous Galerkin-Petrov scheme
    Naz, Rahila
    Jan, Aasim Ullah
    Attaullah
    Boulaaras, Salah
    Guefaifia, Rafik
    Nonlinear Engineering, 2024, 13 (01)
  • [23] THE GALERKIN-PETROV METHOD IN ACCELERATING CONVERGENCE OF TRANSPORT CALCULATIONS AND IN PROVIDING IMPROVED DIFFUSION APPROXIMATIONS
    PREMUDA, F
    SPIGA, G
    VESTRUCCI, P
    ANNALS OF NUCLEAR ENERGY, 1982, 9 (01) : 11 - 20
  • [24] INVESTIGATION OF RELIABILITY OF GALERKIN-PETROV METHOD WITH A SPECIAL STUDY OF HELIUM ATOM GROUND-STATE
    JANKOWSKI, K
    RUTKOWSKI, A
    THEORETICA CHIMICA ACTA, 1976, 43 (02): : 145 - 159
  • [25] A FAST PETROV-GALERKIN SPECTRAL METHOD FOR THE MULTIDIMENSIONAL BOLTZMANN EQUATION USING MAPPED CHEBYSHEV FUNCTIONS
    Hu, Jingwei
    Huang, Xiaodong
    Shen, Jie
    Yang, Haizhao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1497 - A1524
  • [26] Discretization of the Boltzmann equation in velocity space using a Galerkin approach
    Tölke, J
    Krafczyk, M
    Schulz, M
    Rank, E
    COMPUTER PHYSICS COMMUNICATIONS, 2000, 129 (1-3) : 91 - 99
  • [27] Galerkin-Petrov method for strongly nonlinear singularly perturbed boundary value problems on special meshes
    Blatov, IA
    Blatova, VV
    Rozhec, YB
    Strygin, VV
    APPLIED NUMERICAL MATHEMATICS, 1997, 25 (04) : 321 - 332
  • [28] INVESTIGATION OF RELIABILITY OF GALERKIN-PETROV METHOD .2. GROUND-STATE OF BERYLLIUM ATOM
    JANKOWSKI, K
    MUSZYNSKA, J
    THEORETICA CHIMICA ACTA, 1978, 47 (04): : 275 - 282
  • [29] Galerkin-Petrov method for strongly nonlinear singularly perturbed boundary value problems on special meshes
    Voronezh State Univ, Voronezh, Russia
    Appl Numer Math, 4 (321-332):
  • [30] A Spectral Analysis of a Linear Streamline Upwind Petrov Galerkin Scheme for the Linear Boltzmann Transport Equation with Magnetic Field
    Swan, A.
    Yang, R.
    Zelyak, O.
    St-Aubin, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E158 - E158