Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood

被引:0
|
作者
Gadiyar, H. Gopalakrishna [1 ]
Padma, Ramanathan [1 ]
机构
[1] VIT Univ, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
关键词
Ramanujan-Fourier series; von Mangoldt function; twin primes; Sophie Germain prime; Wiener-Khintchine theorem;
D O I
10.1007/s10587-014-0098-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the m-tuple conjecture of Hardy and Littlewood.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [31] A. generalization of a conjecture of Hardy and Littlewood to algebraic number fields
    Gross, R
    Smith, JH
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 195 - 215
  • [32] Analogue of Hardy-Littlewood Test for Fourier Series over Vilenkin System in the Case of Unboundedpk
    Voronov, S. M.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (02) : 80 - 82
  • [33] On mockenhoupt’s conjecture in the Hardy-Littlewood majorant problem
    S. Krenedits
    Journal of Contemporary Mathematical Analysis, 2013, 48 : 91 - 109
  • [34] On mockenhoupt's conjecture in the Hardy-Littlewood majorant problem
    Krenedits, S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2013, 48 (03): : 91 - 109
  • [35] An elementary heuristic for Hardy–Littlewood extended Goldbach’s conjecture
    Christian Táfula
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 391 - 405
  • [36] The Hardy-Littlewood-Chowla conjecture in the presence of a Siegel zero
    Tao, Terence
    Teravainen, Joni
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3317 - 3378
  • [37] A Hardy-Littlewood theorem for multiple series
    Dyachenko, Mikhail
    Tikhonov, Sergey
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 503 - 510
  • [38] On a mixed Littlewood conjecture in fields of power series
    Bugeaud, Yann
    de Mathan, Bernard
    DIOPHANTINE ANALYSIS AND RELATED FIELDS - DARF 2007/2008, 2008, 976 : 19 - +
  • [39] Ramanujan — Fourier series and a theorem of Ingham
    H. Gopalakrishna Gadiyar
    M. Ram Murty
    R. Padma
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 691 - 706
  • [40] RAMANUJAN - FOURIER SERIES AND A THEOREM OF INGHAM
    Gadiyar, H. Gopalakrishna
    Murty, M. Ram
    Padma, R.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (05): : 691 - 706