Multivariate polynomial spline spaces

被引:0
|
作者
Chen, LA [1 ]
Hsu, YJ
Chiang, YC
机构
[1] Natl Chiao Tung Univ, Inst Stat, Hsinchu 30050, Taiwan
[2] Natl Chiao Tung Univ, Dept Math Appl, Hsinchu 30050, Taiwan
[3] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
关键词
piecewise polynomial; multivariate polynomial spline;
D O I
10.1216/rmjm/1181071609
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct bases of certain spaces of multivariate polynomial splines defined on rectangular partitions. These bases are presented by polynomials, truncated power functions and products of these functions. This setting provides a natural generalization of the two-dimensional polynomial spline, proposed by Chui and Wang [3], to p variables.
引用
收藏
页码:789 / 806
页数:18
相关论文
共 50 条
  • [21] On Lagrange multivariate interpolation problem in generalized degree polynomial spaces
    Semian, Corina
    Simian, Dana
    PROCEEDING OF THE 11TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS: COMPUTER SCIENCE AND TECHNOLOGY, VOL 4, 2007, : 455 - +
  • [22] Multivariate polynomial interpolation and sampling in Paley-Wiener spaces
    Bailey, B. A.
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (04) : 460 - 487
  • [23] Construction of polynomial spline spaces over quadtree and octree T-meshes
    Brovka, M.
    Lopez, J. I.
    Escobar, J. M.
    Cascon, J. M.
    Montenegro, R.
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 21 - 33
  • [24] Bounds on Projections onto Bivariate Polynomial Spline Spaces with Stable Local Bases
    M. von Golitschek
    L. L. Schumaker
    Constructive Approximation, 2002, 18 : 241 - 254
  • [25] Bounds on projections onto bivariate polynomial spline spaces with stable local bases
    von Golitschek, M
    Schumaker, LL
    CONSTRUCTIVE APPROXIMATION, 2002, 18 (02) : 241 - 254
  • [26] BASES OF BIQUADRATIC POLYNOMIAL SPLINE SPACES OVER HIERARCHICAL T-MESHES
    Deng, Fang
    Zeng, Chao
    Wu, Meng
    Deng, Jiansong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2017, 35 (01) : 91 - 120
  • [27] Weighted random sampling and reconstruction in general multivariate trigonometric polynomial spaces
    Li, Wei
    Xian, Jun
    ANALYSIS AND APPLICATIONS, 2022, 20 (05) : 1069 - 1088
  • [28] A simple strategy for defining polynomial spline spaces over hierarchical T-meshes
    Brovka, M.
    Lopez, J. I.
    Escobar, J. M.
    Montenegro, R.
    Cascon, J. M.
    COMPUTER-AIDED DESIGN, 2016, 72 : 140 - 156
  • [29] Constrained global optimization of multivariate polynomials using polynomial B-spline form and B-spline consistency prune approach
    Gawali, Deepak D.
    Patil, Bhagyesh V.
    Zidna, Ahmed
    Nataraj, P. S. V.
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (06) : 3743 - 3771
  • [30] SPLINE AND BEZIER POLYGONS ASSOCIATED WITH A POLYNOMIAL SPLINE CURVE
    SABLONNIERE, P
    COMPUTER-AIDED DESIGN, 1978, 10 (04) : 257 - 261