Deciding Probabilistic Simulation between Probabilistic Pushdown Automata and Finite-State Systems

被引:2
|
作者
Fu, Hongfei [1 ]
Katoen, Joost-Pieter [1 ]
机构
[1] Rhein Westfal TH Aachen, Ahornstr 55, D-52074 Aachen, Germany
关键词
infinite-state systems; probabilistic simulation; probabilistic pushdown automata; MODEL CHECKING; BISIMULATION; EQUIVALENCES; BISIMILARITY; TIME;
D O I
10.4230/LIPIcs.FSTTCS.2011.445
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper studies the decidability and computational complexity of checking probabilistic simulation pre-order between probabilistic pushdown automata (pPDA) and (probabilistic) finite-state systems. We show that checking classical and combined probabilistic similarity are EXPTIME-complete in both directions and become polynomial if both the number of control states of the pPDA and the size of the finite-state system are fixed. These results show that checking probabilistic similarity is as hard as checking similarity in the standard, i.e., non-probabilistic setting.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 50 条
  • [31] Deciding probabilistic bisimilarity over infinite-state probabilistic systems
    Brázdil, T
    Kucera, A
    Strazovsky, O
    CONCUR 2004 - CONCURRENCY THEORY, PROCEEDINGS, 2004, 3170 : 193 - 208
  • [32] Methods for Quantitative Analysis of Probabilistic Pushdown Automata
    Kucera, Antonin
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 149 (01) : 3 - 15
  • [33] Deciding probabilistic bisimilarity over infinite-state probabilistic systems
    Brazdil, Tomas
    Kucera, Antonin
    Strazovsky, Oldrich
    ACTA INFORMATICA, 2008, 45 (02) : 131 - 154
  • [34] Deciding probabilistic bisimilarity over infinite-state probabilistic systems
    Tomáš Brázdil
    Antonín Kučera
    Oldřich Stražovský
    Acta Informatica, 2008, 45 : 131 - 154
  • [35] Derandomization of Probabilistic Auxiliary Pushdown Automata Classes
    Venkateswaran, H.
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 355 - 369
  • [36] On the decidability of temporal properties of probabilistic pushdown automata
    Brázdil, T
    Kucera, A
    Strazovsky, O
    STACS 2005, PROCEEDINGS, 2005, 3404 : 145 - 157
  • [37] Algebraic properties of probabilistic finite state automata
    Xie, Zhengwei
    Zhai, Ying
    Deng, Peimin
    Yi, Zhong
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2013, 50 (12): : 2691 - 2698
  • [38] Learning probabilistic residual finite state automata
    Esposito, Y
    Lemay, A
    Denis, F
    Dupont, P
    GRAMMATICAL INFERENCE: ALGORITHMS AND APPLIICATIONS, 2002, 2484 : 77 - 91
  • [39] A Probabilistic Finite-State Automata Framework for Monitoring Long-Term Activities of Daily Living
    Li, Mianjun
    Chen, Peter C. Y.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1716 - 1723
  • [40] On the Derivational Entropy of Left-to-Right Probabilistic Finite-State Automata and Hidden Markov Models
    Andreu Sanchez, Joan
    Alicia Rocha, Martha
    Romero, Veronica
    Villegas, Mauricio
    COMPUTATIONAL LINGUISTICS, 2018, 44 (01) : 17 - 37