Imaging requirements for medical applications of additive manufacturing

被引:42
|
作者
Huotilainen, Eero [1 ]
Paloheimo, Markku [1 ]
Salmi, Mika [1 ]
Paloheimo, Kaija-Stiina [1 ]
Bjorkstrand, Roy [1 ]
Tuomi, Jukka [1 ]
Markkola, Antti [2 ,3 ]
Makitie, Antti [1 ,3 ,4 ]
机构
[1] Aalto Univ, BIT Res Ctr, Espoo, Finland
[2] Univ Helsinki, Cent Hosp, Dept Radiol, Helsinki, Finland
[3] Univ Helsinki, Helsinki, Finland
[4] Univ Helsinki, Cent Hosp, Dept Otolaryngol Head & Neck Surg, Helsinki, Finland
关键词
Additive manufacturing (AM); rapid manufacturing (RM); medical imaging; computed tomography (CT); magnetic resonance imaging (MRI); COMPUTED-TOMOGRAPHY; FABRICATION; RECONSTRUCTION; TECHNOLOGIES; ULTRASOUND; DESIGN; SYSTEM;
D O I
10.1177/0284185113494198
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Additive manufacturing (AM), formerly known as rapid prototyping, is steadily shifting its focus from industrial prototyping to medical applications as AM processes, bioadaptive materials, and medical imaging technologies develop, and the benefits of the techniques gain wider knowledge among clinicians. This article gives an overview of the main requirements for medical imaging affected by needs of AM, as well as provides a brief literature review from existing clinical cases concentrating especially on the kind of radiology they required. As an example application, a pair of CT images of the facial skull base was turned into 3D models in order to illustrate the significance of suitable imaging parameters. Additionally, the model was printed into a preoperative medical model with a popular AM device. Successful clinical cases of AM are recognized to rely heavily on efficient collaboration between various disciplines -notably operating surgeons, radiologists, and engineers. The single main requirement separating tangible model creation from traditional imaging objectives such as diagnostics and preoperative planning is the increased need for anatomical accuracy in all three spatial dimensions, but depending on the application, other specific requirements may be present as well. This article essentially intends to narrow the potential communication gap between radiologists and engineers who work with projects involving AM by showcasing the overlap between the two disciplines.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 50 条
  • [31] Advances in Coaxial Additive Manufacturing and Applications
    Rafiee, Mohammad
    Granier, Floriane
    Therriault, Daniel
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (11)
  • [32] Additive Manufacturing Applications in Biosensors Technologies
    Paul, Abraham Abbey
    Aladese, Adedamola D.
    Marks, Robert S.
    BIOSENSORS-BASEL, 2024, 14 (02):
  • [33] A review of additive manufacturing applications in ophthalmology
    Pugalendhi, Arivazhagan
    Ranganathan, Rajesh
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2021, 235 (10) : 1146 - 1162
  • [34] Part specific applications of Additive Manufacturing
    Khan, Imran
    Mateus, Artur
    Lorger, Christina S. Kamma
    Mitchell, Geoffrey R.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE AND INTELLIGENT MANUFACTURING (RESIM 2016), 2017, 12 : 89 - 95
  • [35] Additive Manufacturing for Aerospace Flight Applications
    Shapiro, A. A.
    Borgonia, J. P.
    Chen, Q. N.
    Dillon, R. P.
    McEnerney, B.
    Polit-Casillas, R.
    Soloway, L.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2016, 53 (05) : 952 - 959
  • [36] ASSESSING THE PERFORMANCE OF ADDITIVE MANUFACTURING APPLICATIONS
    Turk, Daniel-Alexander
    Fontana, Filippo
    Ruegg, Fabian
    Gill, Rajan Joshua
    Meboldt, Mirko
    DS87-5 PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN (ICED 17), VOL 5: DESIGN FOR X, DESIGN TO X, 2017, : 259 - 268
  • [37] A Comprehensive Review on Additive Manufacturing Applications
    Saheb, Shaik Himam
    Kumar, Javvaji Vijay
    THIRD INTERNATIONAL CONFERENCE ON INVENTIVE MATERIAL SCIENCE APPLICATIONS (ICIMA 2020), 2020, 2281
  • [38] Additive manufacturing of glass for optical applications
    Luo, Junjie
    Gilbert, Luke J.
    Bristow, Douglas A.
    Landers, Robert G.
    Goldstein, Jonathan T.
    Urbas, Augustine M.
    Kinzel, Edward C.
    LASER 3D MANUFACTURING III, 2016, 9738
  • [39] Perspectives on additive manufacturing for warhead applications
    Hao Xue
    Qiang Zhou
    Chuan Xiao
    Guangyan Huang
    Defence Technology, 2025, 43 (01) : 225 - 251
  • [40] ADDITIVE MANUFACTURING AND HIGH PERFORMANCE APPLICATIONS
    Lindgren, Lars-Erik
    Lundback, Andreas
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 214 - 219