共 30 条
An acid-compatible co-polymer for the solubilization of membranes and proteins into lipid bilayer-containing nanoparticles
被引:83
|作者:
Hall, Stephen C. L.
[1
,2
]
Tognoloni, Cecilia
[3
]
Charlton, Jack
[1
]
Bragginton, Eilis C.
[4
]
Rothnie, Alice J.
[5
]
Sridhar, Pooja
[1
]
Wheatley, Mark
[1
,7
,8
]
Knowles, Timothy J.
[1
]
Arnold, Thomas
[2
,6
]
Edler, Karen J.
[3
]
Dafforn, Tim R.
[1
]
机构:
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[2] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 ODE, Oxon, England
[3] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[4] Univ Bristol, Univ Walk, Sch Cellular & Mol Med, Bristol BS8 1TD, Avon, England
[5] Aston Univ, Sch Life Hlth Sci, Birmingham B4 7ET, W Midlands, England
[6] European Spallat Source ERIC, POB 176, SE-22100 Lund, Sweden
[7] Univ Birmingham, Ctr Membrane & Prot & Receptors COMPARE, Birmingham, Midlands, England
[8] Univ Nottingham, Nottingham, Midlands, England
来源:
基金:
英国生物技术与生命科学研究理事会;
英国医学研究理事会;
英国工程与自然科学研究理事会;
关键词:
HELICAL PEPTIDE;
NANODISCS;
PH;
PURIFICATION;
SCATTERING;
AMPHIPOLS;
SCAFFOLD;
SMALPS;
SIZE;
D O I:
10.1039/c8nr01322e
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The fundamental importance of membrane proteins in drug discovery has meant that membrane mimetic systems for studying membrane proteins are of increasing interest. One such system has been the amphipathic, negatively charged poly(styrene-co-maleic acid) (SMA) polymer to form "SMA Lipid Particles" (SMALPs) which have been widely adopted to solubilize membrane proteins directly from the cell membrane. However, SMALPs are only soluble under basic conditions and precipitate in the presence of divalent cations required for many downstream applications. Here, we show that the positively charged poly(styrene-co-maleimide) (SMI) forms similar nanoparticles with comparable efficiency to SMA, whilst remaining functional at acidic pH and compatible with high concentrations of divalent cations. We have performed a detailed characterization of the performance of SMI that enables a direct comparison with similar data published for SMA. We also demonstrate that SMI is capable of extracting proteins directly from the cell membrane and can solubilize functional human G-protein coupled receptors (GPCRs) expressed in cultured HEK 293T cells. SMILPs thus provide an alternative membrane solubilization method that successfully overcomes some of the limitations of the SMALP method.
引用
收藏
页码:10609 / 10619
页数:11
相关论文