Ordinary elliptic curves of high rank over (F)over-barp(x) with constant j-invariant

被引:6
|
作者
Bouw, II
Diem, C
Scholten, J
机构
[1] Univ Duisburg Essen, Inst Expt Math, D-45326 Essen, Germany
[2] Katholieke Univ Leuven, COSIC, ESAT, B-3001 Louvain, Belgium
关键词
D O I
10.1007/s00229-004-0476-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that under the assumption of Artin's Primitive Root Conjecture, for all primes p there exist ordinary elliptic curves over (F) over bar (p)(x) with arbitrarily high rank and constant j-invariant. For odd primes p, this result follows from a theorem we prove which states that whenever p is a generator of (Z/lZ)*/<-1> (l an odd prime) there exists a hyperelliptic curve over (D) over bar (p) whose Jacobian is isogenous to a power of one ordinary elliptic curve.
引用
收藏
页码:487 / 501
页数:15
相关论文
共 29 条
  • [21] Observation of the narrow state X(3872)→J/ψπ+π- in (p)over-barp collisions at √s=1.96 TeV -: art. no. 072001
    Acosta, D
    Affolder, T
    Ahn, MH
    Akimoto, T
    Albrow, MG
    Ambrose, D
    Amerio, S
    Amidei, D
    Anastassov, A
    Anikeev, K
    Annovi, A
    Antos, J
    Aoki, M
    Apollinari, G
    Arguin, JF
    Arisawa, T
    Artikov, A
    Asakawa, T
    Ashmanskas, W
    Attal, A
    Azfar, F
    Azzi-Bacchetta, P
    Bacchetta, N
    Bachacou, H
    Badgett, W
    Bailey, S
    Barbaro-Galtieri, A
    Barker, G
    Barnes, VE
    Barnett, BA
    Baroiant, S
    Barone, M
    Bauer, G
    Bedeschi, F
    Behari, S
    Belforte, S
    Bell, WH
    Bellettini, G
    Bellinger, J
    Benjamin, D
    Beretvas, A
    Bhatti, A
    Binkley, M
    Bisello, D
    Bishai, M
    Blair, RE
    Blocker, C
    Bloom, K
    Blumenfeld, B
    Bocci, A
    PHYSICAL REVIEW LETTERS, 2004, 93 (07) : 072001 - 1
  • [22] Supersingular Twisted Edwards Curves over Prime Fields.* II. Supersingular Twisted Edwards Curves with the j-Invariant Equal to 663
    A. V. Bessalov
    L. V. Kovalchuk
    Cybernetics and Systems Analysis, 2019, 55 : 731 - 741
  • [23] Construction of high rank elliptic curves over Q(t) and Q with non-trivial 2-torsion.
    Fermigier, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (10): : 949 - 952
  • [24] Construction of high-rank elliptic curves over Q and Q(t) with non-trivial 2-torsion
    Fermigier, S
    ALGORITHMIC NUMBER THEORY, 1996, 1122 : 115 - 120
  • [25] Construction of high-rank elliptic curves over Q and Q(t) with non-trivial 2-torsion
    Fermigier, S.
    Lecture Notes in Computer Science, 1122
  • [26] Diophantine triples and construction of high-rank elliptic curves over Q with three nontrivial 2-torsion points
    Dujella, A
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (01) : 157 - 164
  • [27] On the rank of elliptic curves over Q(i) with torsion group Z/4Z x Z/4Z
    Dujella, Andrej
    Bokun, Mirela Jukic
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2010, 86 (06) : 93 - 96
  • [28] Construction of elliptic curves with rank >= 5 over Q(t) with a torsion group isomorphic to Z/2Z x Z/2Z
    Kulesz, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (06): : 503 - 506
  • [29] On the rank of elliptic curves over Q(√-3) with torsion groups Z/3Z x Z/3Z and Z/3Z x Z/6Z
    Bokun, Mirela Jukic
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (05) : 61 - 64